Article | REF: M70 V2

Equilibrium diagrams - Binary alloys

Author: Jean HERTZ

Publication date: December 10, 1999 | Lire en français

You do not have access to this resource.
Click here to request your free trial access!

Already subscribed? Log in!


Overview

Read this article from a comprehensive knowledge base, updated and supplemented with articles reviewed by scientific committees.

Read the article

AUTHOR

  • Jean HERTZ: Professor Emeritus, Université Henri-Poincaré - Nancy I

 INTRODUCTION

An alloy can exist in different states: as a crystallized solid, as an aggregate of microcrystals called grains, often of distinct crystalline varieties, or as a liquid or gas.

These different states represent the various phases contained in the alloy, which can change according to the conditions imposed on this "thermodynamic system", mainly chemical composition and temperature, but also pressure. For fixed conditions, a certain holding time at high temperature is required to stabilize the alloy system in an apparently definitive state, which is identified with the system's stable thermodynamic equilibrium. But there are also false equilibria, known as metastable equilibria. To achieve equilibrium, all constituent atoms must be able to move within all phases: this is known as chemical diffusion. In liquids and gases, diffusion is generally active and rapid, but in crystallized phases, a certain "diffusion temperature" must be exceeded to achieve internal atomic movement, which takes place by permutation with vacant sites on the crystal lattice. If a subterfuge (ultra-rapid quenching) succeeds in blocking atomic diffusion in a liquid and cooling it to room temperature without crystallization, the result is an amorphous glass or solid.

This is the experiment that enables us to observe which phases coexist in an alloy, as a function of chemical composition, equilibrium temperature and even applied pressure. It also enables us to determine the phase transition lines on which certain phases appear or disappear. In practice, it can be seen that the pressure variable has very little impact on the equilibrium of condensed liquid or solid phases, whether this state is single-phase or polyphase. The same is not true for volatile metals generating a gaseous phase. To observe the influence of the pressure variable on condensed phases, very high pressures, of the order of several kilobars, are required. For this reason, phase equilibria are often described assuming a fixed pressure, and using as variables the contents of the constituents and the temperature. For example, for a binary alloy, the abscissa shows the average concentration of one of the two constituents, while the ordinate shows the temperature. Such a representation is called a binary phase equilibrium diagram. With volatile metals, another convention is used: the natural vapor pressure is maintained in a constant volume; in this case, the phase diagram is not isobaric.

The very existence of equilibrium diagrams derives from the general laws of chemical thermodynamics. Since the advent of automatic calculation tools, chemical thermodynamics has made it possible to model phase diagrams numerically on the basis of its general laws, and thus to predict or confirm which phases coexist in the...

You do not have access to this resource.

Exclusive to subscribers. 97% yet to be discovered!

You do not have access to this resource.
Click here to request your free trial access!

Already subscribed? Log in!


The Ultimate Scientific and Technical Reference

A Comprehensive Knowledge Base, with over 1,200 authors and 100 scientific advisors
+ More than 10,000 articles and 1,000 how-to sheets, over 800 new or updated articles every year
From design to prototyping, right through to industrialization, the reference for securing the development of your industrial projects

This article is included in

Studies and properties of metals

This offer includes:

Knowledge Base

Updated and enriched with articles validated by our scientific committees

Services

A set of exclusive tools to complement the resources

Practical Path

Operational and didactic, to guarantee the acquisition of transversal skills

Doc & Quiz

Interactive articles with quizzes, for constructive reading

Subscribe now!

Ongoing reading
Equilibrium diagrams
Outline