Présentation

Article

1 - DÉCOUPAGE DU SYSTÈME EN COUCHES TOPOLOGIQUES

2 - MATRICE D'INTERACTIONS

3 - HYPOTHÈSES D'INTERACTIONS ET CONSTRUCTION DU GRAPHE

4 - CEM DES SOUS-SYSTÈMES : INTERACTIONS CONDUITES

5 - COMPATIBILITÉ RADIOÉLECTRIQUE

  • 5.1 - Définition et exemples de systèmes « à risque » en compatibilité radioélectrique
  • 5.2 - De la CEM à la CRE : de la « compatibilité » à la « coexistence »
  • 5.3 - Performance d'un système et critère de brouillage
  • 5.4 - Différents types d'incompatibilités radioélectriques
  • 5.5 - Phénomènes de brouillage en CRE
  • 5.6 - Méthode d'optimisation de l'implantation des antennes sur un porteur
  • 5.7 - Calcul analytique des découplages minimaux pour les cas à risque

6 - LES ENVIRONNEMENTS RADIATIFS NATURELS (ERN)

7 - TECHNIQUES TOPOLOGIQUES. DIAKOPTIQUE

8 - CONCLUSION

| Réf : E1305 v1

Matrice d'interactions
Notions de CEM des systèmes

Auteur(s) : Olivier MAURICE, Guillaume HUBERT, Evlin YALCIN, Frédéric LAFON

Date de publication : 10 nov. 2011

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

Par opposition à la CEM des composants ou des équipements électronique, l’approche de la CEM de niveau système présente des spécificités. Jusqu’au stade final de la qualification, il est important de maîtriser la définition du système et des travaux par phases successives. Ces étapes sont jalonnées par les spécifications, les analyses d’interactions entre les contributeurs CEM, les modélisations et des essais. Dans cet article, sont présentés les aspects spécifiques de la CEM rencontrés sur un système et la démarche incrémentale dans la logique de démonstration. Des exemples inspirés du domaine des lanceurs spatiaux seront utilisés pour illustrer les différents points évoqués.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

ECM basis of systems

Unlike the EMC of components or electronic equipment, systems EMC presents specific features. Up to the final stage of qualification, it is important to master the definition of system and to work in successive phases. These stages are punctuated by specifications, analysis of correlations between EMC contributors, modeling and tests. In this article, we present specific aspects of EMC that we meet on a system, and the incremental approach in demonstration logic. Examples from the domain of space launchers are used to illustrate the different points raised.

Auteur(s)

  • Olivier MAURICE : Senior Scientist au GERAC - Responsable technique d'études et recherches en CEM au GERAC

  • Guillaume HUBERT : Maître de Recherche ONERA - Responsable des activités « Modélisation et prédiction des SEE » et « Caractérisation de l'ERN atmosphérique » à l'ONERA

  • Evlin YALCIN : Thales

  • Frédéric LAFON : Senior Expert CEM - Responsable de l'activité d'expertise CEM à Valeo

INTRODUCTION

Cet article aborde les problématiques de la CEM des systèmes. La notion de système est l'objet de travaux multiples et va au-delà de celle comprise en CEM. Cependant, on s'en inspire pour définir un système comme un regroupement d'électroniques reliées par des liaisons filaires ou antennaires et dévolu à la réalisation d'une fonction.

Aborder la CEM d'un système dans son ensemble est extrêmement compliqué, mais non impossible. Il faut introduire une part de probabilité pour pallier la méconnaissance ou les incertitudes. Plus modestement, les ingénieurs en CEM étudient tous les jours des systèmes plus ou moins complexes, et si aborder un système complet demande des ressources et des budgets rarement disponibles, morceler le système en parties de complexité réduite pour résoudre des problèmes particuliers attachés à des fonctions critiques est un travail régulièrement accompli.

Nous détaillons tout d'abord cette tâche essentielle, en commençant par le morcellement : l'analyse dite « topologique » du système et le découpage en couches de ses structures. Ce découpage permet d'identifier les fonctions électroniques embarquées puis d'établir la matrice d'interaction, ou matrice des gênes. De cette matrice vont découler des graphes établis pour l'analyse des risques CEM rattachés aux fonctions sous-jacentes. Les intersections entre fonctions mettant à jour des risques de perturbation dans la matrice sont étudiées une par une, en passant par la construction de schémas puis de graphes détaillés permettant, comme il a été expliqué dans l'article [E1302], de calculer ces interactions. Les risques sont ensuite levés par adjonctions éventuelles de protections ou simplement sans actions particulières s'il s'avère que les fonctions ne se perturbent pas.

Pour illustrer cette méthodologie, trois cas concrets sont présentés ainsi que trois façons d'étudier en détail et de résoudre ces cas :

  • la résolution de problèmes conduits sur une carte électronique ;

  • la gestion des perturbations entre antennes embarquées ;

  • les méthodologies attachées aux effets des rayonnements radiatifs naturels.

Ces trois cas sont des applications particulières des démarches exposées en introduction.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

EMC   |   system   |   electrical chains

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-e1305


Cet article fait partie de l’offre

Électronique

(242 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

2. Matrice d'interactions

Dans la matrice d'interactions, l'environnement intervient comme un équipement parmi d'autres. Cette précision donnée, le but de la matrice est multiple. Elle va permettre d'organiser le travail tout autant que de servir de guide pour les calculs à réaliser. Pour chaque fonction retenue on va mettre en correspondance les composants rattachés à cette fonction.

Pour un système de freinage (simplifié) par exemple, on trouvera un capteur de commande, un calculateur de freinage, des pompes actionnant la pression d'huile, un capteur de pression d'huile et un capteur de vitesse de roue. Une alimentation assurera la source d'énergie de cette chaîne et l'environnement peut consister en plusieurs sources de couplage vers cette chaîne comme un champ magnétique par exemple illuminant une partie de son câblage. La 1 montre ce que pourrait être un schéma représentant les éléments de la chaîne et son environnement.

À partir de ce schéma on peut lister les composants impliqués et les disposer comme titres de la matrice en lignes et colonnes. Chaque intersection dans la matrice doit alors être identifiée comme source de problèmes en CEM ou non. Il est entendu que chaque élément est compatible avec lui-même : la diagonale est de fait grisée. Lorsque l'on remplit la matrice sous cette forme, elle reste en « 2D », c'est-à-dire que les cases rouges (par exemple) pour indiquer un risque potentiel, servent d'alerte et indiquent les travaux d'études CEM amont qui vont devoir être engagés. Le fait de mettre en rouge ou pas une case dépend des expériences passées sur les situations similaires, du simple rapport des signaux entre émetteurs et récepteurs ou bien indiquer l'absence de connaissance, et la nécessité de réaliser le calcul. Ainsi une case rouge ne signifie pas obligatoirement un risque, mais plus généralement la non-absence de risque ! La 2 présente l'allure d'une telle matrice (on utilise un tableur pour référencer les fonctions électroniques intervenant dans la chaîne étudiée et construire la matrice d'interactions).

Cette matrice est construite sur toute l'information disponible, évaluation rapide, retours d'expériences, etc. On identifie ainsi quatre risques majeurs :

  • la perturbation du calculateur par les appels de courant de la pompe ;

  • la perturbation du capteur vitesse par la même pompe ;

  • les...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Électronique

(242 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Matrice d'interactions
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - MAURICE (O.) -   Compatibilité électromagnétique des systèmes complexes.  -  Hermès-Sciences, (2007).

  • (2) - CLAYTON (R. P.) -   Analysis of multiconductor transmission lines  -  . Wiley (1994).

  • (3) - BENDHIA (S.), RAMDANI (M.), SICARD (E.) -   Electromagnetic compatibility of integrated circuits – Techniques for low emission and susceptibility  -  Springer (2006).

  • (4) - RUEHLI (A.E.) -   Equivalent Circuit Models for Three Dimensional Multiconductor Systems  -  . IEEE Transactions on Microwave Theory and thechniques, vol. 22, no 3, pages 216-221 (1974).

  • (5) - ZIEGLER (J. F.) et al -   Effect of cosmic rays on computer memories  -  . Science, vol. 206, pp. 776-788 1979.

  • (6) - PICKEL (J. C.), and BLANDFORD (J. T.) -   Cosmic-ray induced errors in Mos devices,  -  IEEE...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Électronique

(242 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS