Présentation

Article

1 - NAGE DE L’ANGUILLE

2 - CONCEPTION DU PROTOTYPE

3 - MODÉLISATION DU PROTOTYPE

4 - MODÉLISATION DU CONTACT FLUIDE-STRUCTURE

5 - COMMANDE

6 - IMPLÉMENTATION INFORMATIQUE

7 - CONCLUSION ET PERSPECTIVES

Article de référence | Réf : S7856 v1

Modélisation du prototype
Robot anguille sous-marin en 3D

Auteur(s) : Frédéric BOYER, Mazen ALAMIR, Damien CHABLAT, Wisama KHALIL, Alban LEROYER, Philippe LEMOINE

Relu et validé le 05 févr. 2015

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

Le domaine de la robotique tente à grands renforts d’études de comprendre et de reproduire les performances des poissons en matière d’accélération, de vitesse et de flexion. Cet article présente un projet de réalisation d’un prototype de robot anguille. Basée sur l’empilement de plateformes gainées par un organe continu flexible, la conception de l’architecture de ce robot biomimétique a d’abord nécessité une approche biomécanique. La modélisation du contact fluide-structure a été conduite suivant trois niveaux hiérarchiques : modèles stationnaires, modèles de type fluide parfait et modèles plus complets avec les équations de Navier-Stockes.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Frédéric BOYER : Maître assistant à l’École des mines de Nantes - Institut de recherche en communications et cybernétique de Nantes (IRCCyN, UMR CNRS 6597)

  • Mazen ALAMIR : Chargé de recherche CNRS, laboratoire d’automatique de Grenoble

  • Damien CHABLAT : Chargé de recherche CNRS, Institut de recherche en communications et cybernétique de Nantes

  • Wisama KHALIL : Professeur à l’École centrale de Nantes - Institut de recherche en communications et cybernétique de Nantes

  • Alban LEROYER : Maître de conférences à l’École centrale de Nantes - Laboratoire de mécanique des fluides (LMF, UMR CNRS 6598)

  • Philippe LEMOINE : Ingénieur de recherche à l’École centrale de Nantes - Institut de recherche en communications et cybernétique de Nantes

INTRODUCTION

Comparées à nos réalisations technologiques, les performances des poissons font rêver. Au nombre de celles-ci, on compte leurs prodigieuses capacités d’accélération pouvant atteindre jusqu’à vingt fois la gravité, leur vitesse excédant 70 km/h, leur extraordinaire manœuvrabilité : virage à 180o sans ralentir et sur des rayons de courbure de l’ordre du dixième de leur longueur, tandis que les véhicules actuels doivent ralentir de moitié et prendre des rayons de courbure de l’ordre de dix fois leur longueur. En termes d’efficacité, leur rendement est de l’ordre de dix fois supérieur à ceux de nos meilleurs sous-marins, etc. Ces chiffres motivent à eux seuls les efforts actuels pour comprendre et reproduire les solutions des poissons sur nos systèmes robotiques. Dans ce domaine, relevant de la biomimétique, la première des difficultés rencontrées est décrite en ces termes :

« Reproduire les performances d’un poisson par simple imitation de sa forme et de sa fonction serait impossible car la mise au point d’un véhicule fléchissant de façon lisse et continue est au-delà des possibilités actuelles de la robotique » .

Aussi le caractère continu des poissons constitue-t-il la difficulté essentielle de la recherche dans ce domaine. C’est l’objet de ce projet que de renforcer le biomimétisme en réalisant un prototype de robot anguille « plus continu » que ses homologues actuels. Pour cela, l’architecture mécanique du prototype est basée sur l’empilement en série de plates-formes parallèles gainées par un organe continu flexible jouant le rôle de la peau. La modélisation elle-même s’appuie sur des modèles dynamiques dits macrocontinus (macro pour macroscopiques) basés sur la théorie des poutres Cosserat actionnées de manière continue.

Afin d’atteindre cet objectif, nous avons débuté le projet par une étude biomécanique. Sur la base de cette étude, la conception assistée d’une modélisation macroscopique de type continu (macrocontinue) a été lancée et menée en parallèle d’une modélisation polyarticulée plus fidèle à la réalité technologique du futur prototype. Enfin, dès le départ, une modélisation du contact entre le fluide et la structure a été initiée. Soulignons que nous avons d’emblée adopté une approche hiérarchisée de modélisation tant pour la mécanique du robot que pour le contact fluide-structure. Sur la base de ces modèles et simulateurs associés, la commande est en cours d’étude et sera implémentée in fine sur une architecture informatique.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-s7856


Cet article fait partie de l’offre

Robotique

(60 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

3. Modélisation du prototype

La modélisation du projet a pour objets essentiels :

  • orienter et dimensionner la conception du prototype ;

  • mettre à jour des modèles simples dédiés à la commande ;

  • de manière annexe, produire des connaissances générales sur la locomotion des poissons.

Elle se scinde en deux parties : le « solide » et le « fluide ». Chacun de ces deux volets est ensuite décliné en trois modèles hiérarchiques, du « macro » au « micro ». Cette approche hiérarchisée nous permet de maîtriser la modélisation du niveau le plus fin au plus grossier et de faire monter ou descendre les enseignements acquis par un niveau à tous les autres, avec en ligne de mire la conception du prototype et sa commande. Concernant le volet « solide », la modélisation du prototype se décline comme suit :

  • modélisation macrocontinue (§ 3.1, 3.2, 3.3 et 3.4) ;

  • modélisation polyarticulée sérielle 3.5 ;

  • modélisation polyarticulée hybride 3.6.

Le premier de ces niveaux est dédié à l’étude des allures de nage et à la commande. Il est calé sur l’animal et réalise ainsi la référence du « prototype idéal ». Quant au deuxième, il a pour intérêt essentiel de « faire le pont » entre le...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Robotique

(60 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Modélisation du prototype
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - TRIANTAFYLLOU (M.S.) -   An efficient swimming machine  -  . Scientific American, mars 1995.

  • (2) - MERLET (J.P.) -   Parallel Robots  -  . Kluwer Academic Publishers (2000).

  • (3) - KAROUIA (M.) -   Conception structurale de mécanismes parallèles sphériques  -  . Thèse de doctorat, École centrale de Paris (2003).

  • (4) - GOSSELIN (C.), HAMEL (J.F.) -   The agile eye : a high performance three-degree-of- freedom camera-orienting device  -  . IEEE Int. Conference on Robotics and Automation, 781-787, San Diego, 8-13 mai 1994.

  • (5) - BIRGLEN (L.), GOSSELIN (C.), POULIOT (N.), MONSARRAT (B.), LALIBERTÉ (T.) -   SHaDe, a new 3-dof haptic device  -  . IEEE Transactions on Robotics and Automation, 18, no 2, 166-175 (2002).

  • (6) - AGRAWAL (S.K.), DESMIER (G.), LI (S.) -   Fabrication and analysis of a novel 3 dof parallel wrist mechanism  -  ....

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Robotique

(60 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS