Les matériaux composites sont de plus en plus couramment utilisés par les industriels, lors de l'élaboration de leurs structures mécaniques, en substitution aux matériaux métalliques utilisés jusqu'alors. La raison principale de cette évolution est liée à la diversité des propriétés apportées par ces nouveaux matériaux qui sont constitués de plusieurs matériaux. Ils tendent à regrouper un ensemble de propriétés qui ne peuvent être présentées par quelque matériau que ce soit, pris indépendamment. Dans les applications structurantes, les matériaux composites à base de fibre de carbone sont les plus répandus, en raison de leurs propriétés mécaniques de résistance à la traction/compression, ainsi que de leurs propriétés électriques et thermiques. Bien que le surcoût lié à l'utilisation des matériaux composites ainsi que les difficultés liées à leur recyclage constituent un frein à leur expansion, bon nombre d'industries telles que l'automobile, le ferroviaire, l'aéronautique et le spatial commencent à remplacer de façon récurrente les structures métalliques de leur produit par des structures en composite. Les deux raisons majeures sont le gain de poids que ce type de matériaux procure à leurs structures, donc les économies d'énergie à long terme réalisées par l'utilisateur final du produit, ainsi que l'augmentation récurrente des coûts liés à l'utilisation de métaux en voie de raréfaction, les composites organiques ayant un meilleur bilan écologique.
Que cela soit pour des raisons de confort, de sécurité ou un argumentaire commercial, ces mêmes industries embarquent à bord de leurs structures un nombre croissant d'équipements et/ou systèmes électroniques. L'évolution des architectures électriques et électroniques (AEE) répond à l'évolution des répartitions de rôles et besoins. La nécessité de transversalité des fournisseurs comme l'accroissement d'ergonomie et de capacité technologique ont conduit historiquement à des structures réparties dialoguant via des réseaux de communications. Les conséquences sont un accroissement de sécurité, confort, etc. Les structures mécaniques accueillant ces électroniques embarquées sont traditionnellement mises à contribution pour assurer l'équipotentialité entre deux équipements et le retour de courant des signaux en mode commun. Dès lors, toute évolution des caractéristiques électriques propres aux structures mécaniques induit de facto une variation des contraintes de compatibilité électromagnétique en entrée des équipements électroniques. Les propriétés électriques des matériaux composites, telle l'impédance en basse fréquence, étant moins bonnes que celles des matériaux métalliques, les équipements électroniques embarqués sur des structures en composite sont soumis à des augmentations importantes des contraintes CEM. Afin que les gains réalisés au niveau de la structure de leurs systèmes ne soient pas anéantis par une augmentation conséquente des protections CEM, en termes de poids et de volumes, introduites dans les équipements électroniques, les industriels exercent une pression accrue sur leurs équipementiers pour contenir toujours plus le poids et le coût de leurs équipements. Dès lors, comment les équipementiers et/ou systémiers électroniques peuvent-ils résoudre cette équation ?
Cet article a pour objectif de fournir les grandes tendances quant à l'évolution des caractéristiques électriques des structures mécaniques à base de matériaux composites en fibre de carbone. Il détaillera également des solutions permettant aux équipementiers/systémiers électroniques de contenir les volumes et coûts de leurs développements, malgré l'augmentation des contraintes CEM dans des conditions à préciser.