Le développement des capacités technologiques et des performances des circuits électroniques, en particulier des microprocesseurs et des mémoires, a conduit à un essor considérable des techniques de traitement des signaux électriques de type numérique. Ces techniques de traitement utilisent comme support de l'information des signaux modélisables sous la forme de suites d'impulsions.
Ces signaux transitent soit entre des macrocircuits électroniques, soit à l'intérieur même d'un circuit intégré sur un canal de propagation le plus souvent modélisable sous la forme d'une ligne à deux conducteurs.
Ces circuits fonctionnent avec des fréquences d'horloge des signaux impulsionnels rencontrés de plus en plus élevées avec des largeurs d'impulsions de plus en plus fines. On ne peut plus alors considérer que les dimensions des circuits traitant ces signaux sont faibles vis-à-vis de la longueur d'onde des signaux. L'étude de la propagation des signaux sur de telles structures est indispensable pour, d'une part, comprendre les phénomènes observés, et d'autre part, concevoir ces circuits « numériques ».
Pour cela, il est nécessaire de modéliser la structure de propagation, dans un premier temps en l'idéalisant (ligne sans pertes) de façon à obtenir des premiers résultats. Dans un second temps, il faut faire intervenir les pertes de la structure de propagation pour affiner les résultats.
Ces lignes sont quelquefois utilisées pour « dispatcher » des signaux vers plusieurs utilisateurs. L'étude de la présence de dérivations traitée dans l'article correspond à ce cas pratique.
Dans cet article, sont également abordés les problèmes posés par le couplage entre lignes de propagation, avec comme application l'étude de la diaphonie entre circuits. Un dernier point traite de l'analyse et de la conception de transformateurs d'impulsions réalisés à l'aide de tronçons de ligne ou de câble.