L’holographie est un procédé d’enregistrement de la phase et de l’amplitude d’une onde lumineuse diffractée par un objet sous la forme d’une figure d’interférence. Dans sa version en ligne, l’onde qui sert à illuminer les objets sert également d’onde de référence. On parle alors d’« holographie de Gábor » en référence au physicien Dénes Gábor (Denis Gabor), qui a exposé son principe en 1948. Historiquement, les hologrammes étaient enregistrés sur des plaques photographiques de grande résolution. L’holographie numérique est née du remplacement de ces plaques par des capteurs numériques matriciels (CCD, CMOS) à partir des années 2000, en suivant l’idée proposée pour la première fois en 1967 par J. W Goodman et R. W Laurence. Très tôt, la technique a été appliquée aux études de mécanique des fluides expérimentales car elle permet de mesurer, avec un dispositif expérimental simple, la taille, la position ou encore la vitesse de particules en mouvements dans un écoulement. Dans les années 2000, son caractère 3D la positionne comme une technique alternative prometteuse aux méthodes tomographiques de vélocimétrie par images de particules qui permettent dans leur version stéréoscopique de mesurer les trois composantes des champs de vitesse, mais qui se limitent à une section de l’écoulement. Aujourd’hui, malgré le fort développement des techniques de suivi de particules en trois dimensions à l’aide de quatre caméras (ou plus), l’holographie conserve de nombreux atouts. Elle s’adapte à des configurations expérimentales complexes pour lesquelles les accès optiques sont limités et permet, au-delà du simple positionnement des particules, de mesurer simultanément l’ensemble de leurs caractéristiques, depuis leur taille jusqu’à des informations sur leur composition via leur indice de réfraction. L’holographie se heurte cependant à quelques limitations. La précision de mesure selon l’axe optique est souvent faible avec les montages en ligne sans lentille, du fait d’une faible ouverture numérique. La densité de particules mesurables en une seule acquisition est limitée, ce qui la cantonne, comme beaucoup de méthodes d’imagerie, aux écoulements dilués. Enfin, dans sa version la plus simple, sans optiques supplémentaires de report d’image, le volume de mesure reste limité par la petite taille des capteurs. Pour ces raisons, l’holographie numérique en ligne reste essentiellement à ce jour une technique de laboratoire. Elle présente néanmoins un fort potentiel de développement et est de plus en plus utilisée par les chercheurs et les ingénieurs, profitant des progrès technologiques constants en matière de capteurs, en termes de taille, de résolution (pixel de plus en plus petit, pouvant atteindre 1 μm), de dynamiques (jusqu’à 16 bits réels) et de fréquences d’acquisition (plusieurs dizaines de kilohertz pour des images de plusieurs mégapixels). Cet article s’attache à décrire l’holographie numérique en ligne et son application à la mécanique des fluides expérimentale. Les phénomènes de diffraction et de propagation de la lumière sur lesquels la technique repose sont rappelés dans la première section dans le cadre de l’optique scalaire. Les montages optiques courants et les différentes méthodes numériques de reconstruction sont décrits dans la deuxième partie de l’article. La troisième et dernière partie illustre, à travers plusieurs exemples, tout le potentiel de cette technique de mesure pour la caractérisation des écoulements polyphasiques.