Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleRECHERCHEZ parmi plus de 10 000 articles de référence ou pratiques et 4 000 articles d'actualité
PAR DOMAINE D'EXPERTISE
PAR SECTEUR INDUSTRIEL
PAR MOTS-CLES
NAVIGUER DANS LA
CARTOGRAPHIE INTERACTIVE
DÉCOUVREZ toute l'actualité, la veille technologique GRATUITE, les études de cas et les événements de chaque secteur de l'industrie.
Auteur(s) : Robert BOTET
Relu et validé le 04 févr. 2020
Télécharger l'extrait gratuit pour explorer cet article
Déjà abonné ? ouSe connecter
Présentation
Lire l'article
Bibliographie & annexes
Inclus dans l'offre
Robert BOTET : Chargé de recherche au CNRS, UMR 8502 - Laboratoire de physique des solides d’Orsay
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleDans un livre célèbre, B. Mandelbrot introduisait, en 1975, les fractales dans notre vision du monde. La diffusion de ce concept a suivi des trajets aussi étranges que les objets eux-mêmes. Parti d'une notion mathématique, ce concept s'est répandu lentement dans les diverses branches des Sciences. Non qu'on ne reconnût pas bientôt ces objets en Physique ou en Biologie, mais une connotation métaphysique a rendu cette idée suspecte aux yeux de nombreux scientifiques. C'est une histoire qui s'est pourtant déjà déroulée dans d'autres circonstances, et pour d'autres objets. Il y a maintenant si longtemps que nous l'avons presque oubliée : les sceptiques grecs niaient l'utilité de la Géométrie euclidienne, car cette science était basée, selon eux, sur des concepts abstraits et inimaginables. « La ligne droite est inconcevable » écrivait Sextus Empiricus, et il argumentait cette assertion par l'impossibilité de représenter – et même, de se représenter mentalement – un tel objet infini et d'épaisseur nulle. Pour les fractales, nous sommes confrontés à des vertiges similaires. On y trouve une nouvelle sorte d'infini, qui fut rapidement récupéré par notre inconscient collectif ; je ne parlerai même pas de l'introduction des fractales dans l'art, qui a permis une focalisation supplémentaire du grand public sur cette notion. On commence à deviner ici quel effort doit faire le scientifique pour s'affranchir d'un tel poids métaphysique et rester à un niveau pragmatique. Et l'on excusera ceux qui ont été tentés de dire un jour avec un certain dédain : « les gens voient maintenant des fractales partout ! ». Même si ce genre de réflexion a freiné la diffusion d'une idée qui se révèle pourtant chaque jour plus féconde.
Alors, doit-on voir des fractales partout ou doit-on nier leur existence réelle ? Heureusement, il existe une « voie du milieu »: les fractales réelles existent dans un certain domaine de longueurs. En deçà de ces limites, nous voyons un objet fractal et les propriétés physiques reflètent fidèlement la fractalité de la structure. Au-delà, l'objet redevient commun. C'est cette approche, résolument orientée Physique, que nous allons voir dans cet article, sur des exemples réels, et le lecteur sera donc exempté de cet exercice mental éprouvant : essayer d'imaginer ces objets qui, comme la ligne droite, doivent en principe être matériels et structurés, bien que de volume exactement nul...
Le parti pris volontaire de cet article est donc limité aux objets fractals volumiques étudiés en Physique. On y parlera volontiers d'agrégats, qu'il faut entendre dans le sens général d'objets fabriqués à partir d'entités microsco-piques (les particules). Cela signifie que, pour des raisons d'homogénéité d'écriture, sera exclue de cette étude la description des surfaces et des lignes fractales, bien qu'elles aient, bien sûr, en principe droit de cité en Physique. Il faut bien se rendre compte qu'il existe des livres entiers dédiés à la simple géométrie des fractales et que, pour rentrer un peu dans les détails, nous sommes obligés de restreindre ici le nombre d'exemples. Même si l'on ne parle pas de lignes fractales, les idées fondamentales, et les outils d'étude, restent globalement similaires pour ces objets.
La notion de fractalité est, à la base, géométrique. Nous nous contenterons ici d'une telle description de la morphologie de ces objets, les propriétés physiques de ces fractales sortant du cadre d'un article aussi court. Nous suivrons ainsi ce qu'a été plus ou moins l'approche historique des fractales en Physique. Pendant longtemps, on n'a reconnu en effet ces objets que par leurs structures particulières. Il faut dire que, très souvent, on les connaissait depuis longtemps, mais, par manque d'approche théorique permettant de les caractériser quantitativement, ils étaient relégués au rang d'objets sans intérêt. Tel a été le rôle discret des poussières, fumées et autres boues, autant de matériaux qui ne commencent que maintenant à acquérir leur statut d'objets intéressants. Faciles à visualiser, ils furent des candidats de choix pour tester les hypothèses fractales de leur morphologie, et ils n'ont pas déçu.
Déjà abonné ? ouSe connecter
Cet article fait partie de l’offre
Physique Chimie (200 articles en ce moment)
Cette offre vous donne accès à :
Une base complète et actualisée d'articles validés par des comités scientifiques
Un service Questions aux experts et des outils pratiques
Des Quiz interactifs pour valider la compréhension et ancrer les connaissances
(1) - MANDELBROT (B.) - Les objets fractals, forme, hasard et dimension. - 1975, Flammarion, Paris.
(2) - MANDELBROT (B.) - The Fractal Geometry of Nature. - 1982, Freemann.
(3) - VICSEK (T.) - Fractal Models for Diffusion-Controlled Aggregation. - J. Phys. A, 16 : L647-L650, 1983.
(4) - FOURNIER D’ALBE (E.) - Two New Worlds, I - The Infra-World, II - The Supra-World. - 1907, Longmans Green, London.
(5) - JONES (H.) - Fractals before Mandelbrot - A Selective History. - Fractals and Chaos, 1 / 7-34, 1991.
(6) - BÉLAIR (J.), DUBUC (S.) - Fractal Geometry and Analysis. - 1991, Kluwer Academic.
(7)...
Déjà abonné ? ouSe connecter
DÉTAIL DE L'ABONNEMENT :
TOUS LES ARTICLES DE VOTRE RESSOURCE DOCUMENTAIRE
Accès aux :
Articles et leurs mises à jour
Nouveautés
Archives
Articles interactifs
Formats :
HTML illimité
Versions PDF
Site responsive (mobile)
Info parution :
Toutes les nouveautés de vos ressources documentaires par email
DES ARTICLES INTERACTIFS
Articles enrichis de quiz :
Expérience de lecture améliorée
Quiz attractifs, stimulants et variés
Compréhension et ancrage mémoriel assurés
DES SERVICES ET OUTILS PRATIQUES
Votre site est 100% responsive,
compatible PC, mobiles et tablettes.
FORMULES
Formule monoposte | Autres formules | |
---|---|---|
Ressources documentaires | ||
Consultation HTML des articles | Illimitée | Illimitée |
Quiz d'entraînement | Illimités | Illimités |
Téléchargement des versions PDF | 5 / jour | Selon devis |
Accès aux archives | Oui | Oui |
Info parution | Oui | Oui |
Services inclus | ||
Questions aux experts (1) | 4 / an | Jusqu'à 12 par an |
Articles Découverte | 5 / an | Jusqu'à 7 par an |
Dictionnaire technique multilingue | Oui | Oui |
(1) Non disponible pour les lycées, les établissements d’enseignement supérieur et autres organismes de formation. |
||
Formule 12 mois 1 670 € HT |
Autres formules |
INTRODUCTION
1 - QU’EST-CE QU’UNE FRACTALE ?
2 - LES FRACTALES SONT PARTOUT
Information
Quiz d'entraînement bientôt disponible
TECHNIQUES DE L'INGENIEUR
L'EXPERTISE TECHNIQUE ET SCIENTIFIQUE
DE RÉFÉRENCE
Avec Techniques de l'Ingénieur, retrouvez tous les articles scientifiques et techniques : base de données, veille technologique, documentation et expertise technique
SOLUTION EN LIGNE
Découvrez KréaCCTP, le 1er logiciel de rédaction de CCTP en ligne. Intuitif, il s’appuie sur une bibliothèque de descriptifs actuelle et fiable.
Automatique - Robotique | Biomédical - Pharma | Construction et travaux publics | Électronique - Photonique | Énergies | Environnement - Sécurité | Génie industriel | Ingénierie des transports | Innovation | Matériaux | Mécanique | Mesures - Analyses | Procédés chimie - bio - agro | Sciences fondamentales | Technologies de l'information
ACCUEIL | A PROPOS | ANNUAIRE AUTEURS | EXPERTS SCIENTIFIQUES | PUBLICITÉ | PLAN DU SITE | MENTIONS LÉGALES | RGPD | COOKIES | AIDE & FAQ | CONTACT
PAIEMENT
SÉCURISÉ
OUVERTURE RAPIDE
DE VOS DROITS
ASSISTANCE TÉLÉPHONIQUE
+33 (0)1 53 35 20 20