Les progrès accomplis dans l’instrumentation électronique permettent d’étendre les tests de réflectométrie à des champs d’applications de plus en plus vastes et diversifiés. Dans ce contexte, on peut néanmoins distinguer deux domaines relativement disjoints, l’un s’adresse à la détection d’obstacles, le second aux mesures de vitesses d’objets sans lien mécanique. Dans chaque cas, la réflectométrie met en jeu la propagation d’ondes acoustiques ou d’ondes électromagnétiques définies au sens large du terme. En effet, selon l’application, on trouvera des ondes guidées par un support pouvant revêtir la configuration de lignes de transmission de signaux électriques ou de matériaux canalisant diverses variétés d’ondes acoustiques. Dans d’autres circonstances, les ondes seront propagées en espace libre suivant la configuration d’ondes sphériques faisant intervenir les trois dimensions de l’espace. On trouvera des ondes acoustiques transmises directement dans l’air ou plus généralement des ondes électromagnétiques propagées dans l’espace depuis des antennes compactes alimentées par des sources de signaux d’ultra haute fréquence.
Cet article d’initiation au sujet sera cependant restreint à deux domaines transposant assez facilement à la réflectométrie les propriétés de la propagation d’ondes rapportées dans les articles [D 1 322] et [D 1 324] du présent traité. La première référence [D 1 322] s’adresse à la théorie générale des lignes de transmission, la seconde [D 1 324] traite plus précisément la question des équivalents électromagnétiques et acoustiques des milieux de propagation continus ainsi que les propriétés approfondies de l’impédance d’entrée d’une ligne.
Le texte divisé en deux parties bien distinctes examinera donc en premier lieu la détection d’obstacles introduits dans une ligne de transmission. Il s’agira de mettre en œuvre une méthodologie permettant de détecter leur présence et de fournir des paramètres précis sur leur localisation. Ce problème académique permettra d’expérimenter trois méthodes d’analyse partageant divers mérites de performances. L’une consistera à l’analyse directe basée sur la propagation d’impulsions de durée bien plus faible que l’apparition de l’écho retardé par l’interception présumée de l’obstacle. La deuxième méthode abordera le problème par la mesure du coefficient de réflexion de la ligne stimulée par des signaux sinusoïdaux. La troisième méthode réalisera un compromis des procédés précédents en pratiquant la synthèse d’impulsions par une technique appropriée de traitement du signal.
La seconde partie de l’article concerne exclusivement la mesure de la vitesse d’objets exploitant l’effet Doppler. Après avoir brièvement rappelé les propriétés des ondes sphériques, nous verrons que toute onde de ce type peut être localement assimilée à un phénomène de propagation ordonné suivant une seule dimension de l’espace. Cette simplification jointe à l’analyse de la composition de la vitesse de l’objet et de l’onde incidente permettra de bien dissocier les propriétés physiques des effets Doppler acoustiques et électromagnétiques. Nous produirons quelques exemples d’applications où sera considérée la production d’ondes acoustiques émises depuis des sources véhiculées à des vitesses subsoniques ou hypersoniques. Nous nous adresserons ensuite aux mesures de vitesses de véhicules pratiquées successivement depuis une source d’émission attachée à un référentiel terrestre ou à une source embarquée sur le véhicule.
Pour conclure une discussion sera ouverte sur l’interprétation énergétique de l’effet Doppler et sur la notion de longueur d’onde transcrite dans ce concept particulier.