Présentation

Article

1 - DÉFINITIONS ET GÉNÉRALITÉS

2 - CONSIDÉRATIONS THÉORIQUES

3 - TECHNOLOGIES D’INTERCONNEXION

4 - AXES DE RECHERCHES ET ÉVOLUTION À LONG TERME

| Réf : E3652 v1

Définitions et généralités
Interconnexions optiques

Auteur(s) : Mathias PEZ

Date de publication : 10 nov. 2001

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Auteur(s)

  • Mathias PEZ : Ingénieur de recherche au Laboratoire Central de Recherches de Thales - Enseignant à l’École Spéciale de Mécanique et d’Électricité (ESME-Sudria) Spécialisation de l’École Nationale Supérieure de l’Aéronautique et de l’Espace (SUPAERO)

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

L’augmentation permanente de la complexité et des performances des composants permet une plus grande intégration de fonctions électroniques au sein d’une même « puce ». Avec le récent développement de techniques numériques de traitement de signaux, les capacités de calculs des composants ont été considérablement accrues. Cette puissance de calcul plus importante implique des débits de communication de plus en plus grands entre processeurs, avec les écrans de visualisation et vers les « capteurs ». La croissance des débits impose à son tour aux ingénieurs de conception l’utilisation de nouvelles techniques d’interconnexions entre composants : les avantages intrinsèques de l’optique (atténuation, cohérence, parallélisme, intégration, etc.) et son utilisation massive dans les réseaux de communications longues distances en font un candidat idéal.

Cet article introduit les technologies d’interconnexions optiques, leurs avantages et inconvénients face aux interconnexions traditionnelles. Après un bref rappel des notions de propagation guidée, les composants appropriés aux interconnexions optiques et des notions sur la conception des interfaces optoélectroniques seront présentés au lecteur, afin qu’il soit en mesure d’appréhender les différentes technologies mises en œuvre au sein des modules optoélectroniques. Cet article décrit l’impact des interconnexions optiques sur l’architecture physique et logicielle des systèmes de traitement et de communication. Les différentes technologies passives et actives sont détaillées pour aboutir à la réalisation de modules intégrés et à leur caractérisation en environnement.

En conclusion, les nouveaux axes de recherches seront introduits. Associés à la très forte croissance de la microélectronique, ils devraient permettre aux interconnexions optiques de s’imposer dans le domaine des communications entre cartes, entre composants et éventuellement au sein même d’un composant.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-e3652


Cet article fait partie de l’offre

Optique Photonique

(219 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

1. Définitions et généralités

Le succès de l’Internet, avec plus d’un milliard d’usagers en l’an 2000 (source : UCSB), et la rapide croissance des performances des microprocesseurs (tableau 1) induisent des contraintes toujours plus fortes sur les interconnexions dans les systèmes électroniques. Le nombre d’entrées/sorties corrélé au débit d’informations s’étranglera à terme dans le goulot des solutions d’interconnexions électriques. Les liaisons électriques ne seront plus capables, dans leur environnement numérique, de transmettre les débits d’informations prévus : le succès des applications multimédias, rendu possible grâce à l’accroissement des performances des microprocesseurs, implique à présent de transmettre sur les réseaux locaux ou au sein des ordinateurs des débits pouvant excéder 10 Gbit/s (gigabits par seconde).

Les interconnexions sur cuivre, majoritairement utilisées dans le domaine des réseaux locaux, sont déjà pénalisées par leurs résistances et capacités, qui limitent leur fonctionnement à quelques gigabits par seconde sur quelques mètres. Les précautions de mise en œuvre (adaptation d’impédance, blindage...) inhérentes aux hautes fréquences sont également de plus en plus coûteuses.

Les solutions optiques sont envisagées pour soulager l’embouteillage des informations au sein des réseaux et des ordinateurs. Elles ont déjà prouvé leurs performances en termes de distance de propagation, d’atténuation et de bande passante, dans les applications de télécommunications longues distances, où les débits cumulés s’élèvent à plusieurs centaines de gigabits par seconde sur une seule fibre.

L’importance des liaisons optiques dans les systèmes de télécommunication a permis de mettre en évidence leurs principales propriétés, ainsi que de « démystifier » leur utilisation. Cependant, leur extension aux calculateurs ou au mutlimédia (intimement lié à l’Internet) ne peut se faire que par une forte intégration et une réduction des coûts de mise en œuvre. L’utilisation de sources optiques appropriées et de technologies d’alignement passives permettra de s’affranchir de ces contraintes.

On regroupe généralement sous l’expression interconnexions optiques tous les systèmes de transmission de données...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Optique Photonique

(219 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Définitions et généralités
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - PÉREZ (J.P.) -   Optique géométrique et ondulatoire.  -  Éditions Masson (1994).

  • (2) - CHARTIER (G.) -   Manuel d’optique.  -  Éditions Hermes (1997).

  • (3) - SMITH (W.J.) -   Modern Optical Engineering.  -  MacGraw-Hill (1990).

  • (4) - KASTLER (A.) -   Optique.  -  Éditions Masson (1992).

  • (5) - SALE (T.E.) -   Vertical Cavity Surface Emitting Lasers.  -  John Wiley & Sons, Inc. (1997).

  • (6) - MICKELSON (A.E.), BASAVANHALLY (N.R.)., LEE (Y.C.) -   Optoelectronic Packaging.  -  John Wiley & Sons, Inc (1997).

  • (7) - BUCHWALD (A.), MARTIN (K.) -   Integrated...

DANS NOS BASES DOCUMENTAIRES

  • Fibres optiques pour télécommunication.

  • Connectique optique.

  • Propagation du rayonnement dans les matériaux.

1 Conférences

Optical Fibre Communication : OFC

European Materials Research Society : E-MRS

Workshop on Optical Communications and Computer Sciences : WOCCS

Lasers and Electro-Optics Society : LEOS

Electronic Components and Technology Conference : ECTC

International Electronic Packaging Technical Conference : InterPack (IPACK)

HAUT DE PAGE

2 Organismes de normalisation et de standardisation

Dans le domaine des interconnexions optiques, on retrouve la plupart des organismes de normalisation et de standardisation du monde de l’électronique et de la microélectronique. Citons à titre d’exemple :

  • l’Union technique de l’électricité (UTE) ;

  • l’International...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Optique Photonique

(219 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS