Le rayonnement synchrotron, lumière émise par des électrons ou des positrons relativistes et soumis à une accélération centripète fournit un très large spectre de longueurs d’onde depuis l’infrarouge lointain jusqu’aux rayons X. La nouvelle génération de machines spécialement conçues pour l’utilisation de cette lumière a ouvert, à une large communauté de scientifiques de laboratoires publics et privés, une grande variété de méthodes d’investigation de la matière condensée qui complètent et vont au-delà des méthodes classiques. La continuité spectrale et l’utilisation en faisceau monochromatique, la brillance de la source, sa structure temporelle, sa polarisation linéaire ou circulaire, ses propriétés de cohérence ont donné une nouvelle dimension aux études des propriétés structurales, électroniques, magnétiques de la matière à un niveau de résolution extrême. Les méthodes de caractérisation et d’analyse basées sur l’absorption, la diffusion-diffraction du rayonnement avec de nombreuses variantes, ou encore sur la fluorescence X et la photoémission, sont décrites avec différents exemples d’application choisis dans les secteurs de la catalyse, l’électrochimie, l’adhésion, la biocristallographie, la métallurgie ou encore les matériaux magnétiques artificiels. Les technologies et l’instrumentation associées au rayonnement synchrotron et au laser à électrons libres dans l’infrarouge, tels que les techniques d’imagerie, de microscopie et de lithographie beaucoup plus récemment développées en France ou à l’étranger sont présentées et illustrées par des exemples empruntés à la médecine, la chimie, l’électrochimie, la micromécanique. Enfin, le laser à électrons libres, qui peut être considéré comme une retombée du développement du rayonnement synchrotron, est décrit comme une autre nouvelle source de lumière. Les performances de la version infrarouge de ce laser sont illustrées par des applications en électrochimie et en microscopie à effet tunnel.