La communication est un facteur primordial dans les systèmes de production industriels. Les performances requises en termes de flux d’informations sont aussi importantes (sinon plus) que les flux de matières et d’énergies. Le réseau a pour objectif principal l’échange d’informations.
L’architecture décentralisée s’est rapidement imposée dans la conduite de procédés. En effet, les systèmes distribués sont généralement mieux appropriés aux localisations des capteurs et des actionneurs qui constituent les sources d’information. Cela nécessite une communication fiable et robuste associée à une électronique « intelligente » et peu coûteuse.
Dans l’industrie, les communications par réseaux sont classifiées en quatre niveaux qui sont souvent représentés par une pyramide. Le concept de production assistée par ordinateur ou CIM (computer integrated manufacturing) comprend un niveau dit de terrain, un niveau cellule, un niveau usine ou atelier et un niveau études et direction.
-
Le niveau études et réalisation permet la centralisation des informations liées à la conception comme les fichiers des outils de CAO.
-
Le niveau usine concerne la gestion de la production et des commandes.
-
Le niveau cellule va permettre la supervision, le suivi des stocks et le contrôle de la production.
-
Le niveau terrain est au plus proche de la production ; il correspond aux différentes machines qui assurent la fabrication, la transformation, l’assemblage autour d’un objet ou d’un ensemble. Il met en relation les machines à commandes numériques, les robots, les automates programmables, les régulateurs, les convoyeurs ainsi que les capteurs et actionneurs.
Le réseau (ou bus) de terrain (fieldbus) est aussi nommé « réseau local industriel ». Il est qualifié d’industriel car orienté production et local car établi dans une partie de ce site de production que constitue une entreprise. Il permet donc de mettre en communication des capteurs, des actionneurs, des automates programmables industriels, des machines à commande numérique, des robots, des régulateurs industriels et des systèmes de commande et de contrôle simples. Dans les réseaux de terrain, la taille des messages échangés est assez faible comparativement aux autres types de réseaux, locaux ou grandes distances. Les flux d’information sont plutôt périodiques et l’aspect contrainte de temps est prioritaire (application temps réel).
Les réseaux de terrain fonctionnant au sein d’environnements perturbés du point de vue électromagnétique, le support est généralement un câble coaxial blindé ou une paire torsadée travaillant en mode différentiel ou encore une fibre optique pour une plus grande immunité au bruit. Les distances de communications sont assez faibles par rapport aux autres types de réseaux, souvent inférieures à quelques dizaines de mètres.
Une topologie en bus est généralement adoptée pour sa facilité de mise en place, d’évolution (ajout ou retrait de systèmes) et d’extension (répéteurs).
Pour faire référence à la normalisation de l’architecture des réseaux de l’ISO qui est l’OSI (open system interconnection), trois des sept couches sont couvertes : la couche physique (impossible de s’en passer), la couche lien ou liaison (doit exister sinon comment communiquer ?) et la couche application (pour pouvoir tirer parti des informations échangées).
Toutefois, l’évolution des réseaux vers une architecture uniforme simplifiée conduit les industriels à opter pour des réseaux locaux informatiques pour leurs réseaux de terrain. L’évolution technologique en matière de réseaux des dix dernières années montre que des réseaux hauts débits pourraient venir remplacer tous les types de réseaux dans les quatre niveaux de la CIM. Des passerelles sont alors déployées pour s’interconnecter aux réseaux informatiques avec des protocoles basés sur la pile TCP/IP et ses couches hautes utilisées autour de l’Internet.