Le marché des circuits intégrés est toujours en essor avec une croissance mondiale à deux chiffres en 2017 comme l’indique le comité WSTS (Word Semiconductor Trade Statistics). Ce marché est tiré par des champs applicatifs en forte croissante tels que le big data, généralement géré par des centres de données (data centers), mais aussi l’internet des objets (Internet of Things ou IoT), et l’informatique dans les nuages (cloud computing). Les objectifs ont aussi changé ces dernières années pour répondre aux enjeux sociétaux, notamment environnementaux, avec la réduction de la consommation énergétiques des circuits ou systèmes intégrés, mais toujours en recherchant la performance tout en optimisant le coût. On parle maintenant d’efficience, qui peut se traduire comme l’efficacité à moindre coût.
Dans ce contexte, certains types de systèmes intégrés ou non sur une même puce subissent une forte demande. Les systèmes embarqués, enfouis et mobiles sont cachés et se comportent comme de véritables ordinateurs (invisibles) [H 8 000]. Ils contiennent généralement un ou plusieurs processeurs, de nombreux périphériques (coprocesseurs d’aide au traitement, gestion des entrées/sorties, gestion de la communication), des éléments mémoire, et des composants dédiés au traitement intensifs, tels que les processeurs graphiques (GPU pour « Graphics Processing Unit ») ou reconfigurables tels que les FPGA (pour « Field Programmable Gate Array »). De telles puissances de traitement nous rapprochent du domaine du calcul haute performance, avec des architectures intégrant de nombreux processeurs, 72 processeurs pour le Tile-Gx72, 256 processeurs pour le MMPA de Kalray et 3 584 cœurs pour le Tesla P100 de Nvidia. De tels systèmes sont réalisés avec quelques dizaines de milliards de transistors.
Les outils automatiques d’aide à la conception de systèmes ont évolué et rendent possible l’intégration de ces milliards de transistors sur un seul circuit. Les outils et les méthodes de conception ont depuis les années 1980 fait le pas vers des niveaux d’abstraction plus élevés.
Ces nouvelles méthodes s’appuient sur des techniques et des outils largement utilisés en conception de circuits, et proposent aux concepteurs de systèmes de se focaliser sur des choix d’architecture et de technologie. Les étapes finales de conception sont alors effectuées par des outils automatiques.
Ce présent article fait le point sur les méthodes et les techniques de conception de systèmes et circuits numériques, depuis la spécification du système jusqu’à l’obtention des masques permettant de réaliser physiquement le circuit.
La première section présente les méthodes, les modèles et les langages utilisés dans les différentes étapes de conception de systèmes. Un flot classique de conception est ensuite présenté. Certaines étapes de la conception de systèmes intégrés, notamment la synthèse comportementale, puis la synthèse logique et physique, sont détaillées. La dernière section est consacrée à l’évolution des systèmes intégrés, d’abord en présentant les systèmes monopuces, puis en donnant quelques perspectives des réseaux sur puce.
Le lecteur trouvera en fin d'article un glossaire des termes utilisés.