Alors que les applications ne cessent d’évoluer vers plus de complexité, on assiste dans le même temps à un accroissement des difficultés à exploiter les avancées de la technologie des semi-conducteurs qui visent à apporter des solutions performantes à ces applications. Par exemple, sous l’appellation Internet des Objets au sens large (IoT), tout un ensemble de systèmes ou d’applications embarquées est envisagé avec un développement commercial attendu a priori très important. Parmi ces systèmes, on peut citer ceux portés par la personne (smart wearables) qui incluent des capteurs, des éléments de communication, de mémorisation et de calcul avec une part de logiciel embarqué significative. Dans le domaine de la mobilité, les perspectives de systèmes qui s’appuient sur une adaptation dynamique (les systèmes identifiés avec le préfixe « Software-defined » comme « Software-defined network », « software-defined application ») visent à rendre l’infrastructure plus flexible dans son offre de services vis-à-vis d’utilisateurs mobiles. Le domaine de la réalité virtuelle est aussi un secteur en pleine évolution avec des applications potentiellement nombreuses qui nécessitent des puissances de calcul et de mémorisation intégrées importantes. L’évolution vers des résolutions d’affichage en ultra haute définition a un impact direct sur les puissances de calcul, les tailles mémoires et les débits de données que doivent supporter les architectures matérielles. Cette brève présentation du domaine des applications illustre pourquoi les besoins en électronique embarquée continuent de progresser. Ainsi la mobilité sous-jacente à tous ces systèmes met l’accent sur l’énergie nécessaire à leur fonctionnement sur un intervalle de temps sans recharge qui ne doit pas constituer une contrainte trop forte pour un usage normal de ces systèmes. Il s’agit ici souvent de rechercher des solutions d’architectures qui maximisent le rapport puissance de calcul par joule consommé afin de permettre une durée de fonctionnement correcte entre deux recharges de la batterie.
Par ailleurs, comme indiqué ci-dessus, la technologie des semi-conducteurs peine aujourd’hui à assurer une amélioration des caractéristiques des circuits suivant la même dynamique que celle observée depuis quarante ans (dynamique décrite par la Loi de Moore et ses variantes). Comme nous le montrons dans la suite, maximiser le rapport puissance de calcul par joule consommé n’est plus toujours suffisant, il peut être nécessaire de chercher également à maximiser le rapport puissance de calcul par watt consommé et ce principalement pour des questions de dissipation thermique. En effet, le caractère embarqué et mobile de certaines applications empêche d’intégrer des systèmes sophistiqués de dissipation de chaleur, il faut donc agir directement sur la source de chaleur pour éviter une montée en température qui pourrait altérer la fiabilité du système.
Nous illustrons dans la suite les principales techniques qui permettent de structurer l’architecture d’un circuit afin de pouvoir en contrôler la puissance dissipée. Ainsi structurer un circuit en domaines de puissance et en domaines d’horloge donne la possibilité d’agir sur les paramètres qui impactent directement la consommation de puissance. Cependant, cette structuration modifie les comportements du circuit et peut conduire à introduire des erreurs logiques ou des altérations des comportements temporels. Ces différents points sont abordés dans la suite de l’article en se plaçant au niveau de l’architecture matérielle du système et sans détailler comment les techniques utilisées sont mises en œuvre au niveau logique ou technologique.