Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleRECHERCHEZ parmi plus de 10 000 articles de référence ou pratiques et 4 000 articles d'actualité
PAR DOMAINE D'EXPERTISE
PAR SECTEUR INDUSTRIEL
PAR MOTS-CLES
NAVIGUER DANS LA
CARTOGRAPHIE INTERACTIVE
DÉCOUVREZ toute l'actualité, la veille technologique GRATUITE, les études de cas et les événements de chaque secteur de l'industrie.
Auteur(s) : Michel NEY
Relu et validé le 05 janv. 2021
Télécharger l'extrait gratuit pour explorer cet article
Déjà abonné ? ouSe connecter
Présentation
Lire l'article interactif
Bibliographie & annexes
Quiz & Test
Inclus dans l'offre
Michel NEY : Institut Mines-Télécom, TELECOM Bretagne, Brest, France
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleLes phénomènes électromagnétiques ont été longtemps négligés voire ignorés. La raison est due au fait que les systèmes ont longtemps opéré à des fréquences relativement basses pour lesquelles la longueur d’onde était bien plus grande que leurs dimensions. C’est donc tout d’abord dans le domaine des machines électriques que l’on s’est mis à chercher le moyen de résoudre les équations de type Laplace ou de Poisson qui régissent les champs en électrostatique et magnétostatique. Ces équations sont les formes statiques de l’équation d’ondes et permettent de déterminer les champs (ou plus généralement les potentiels associés) dans les structures puis d’en déduire les distributions de charges ou de courants. En ce qui concerne les circuits, les lemmes de Kirchhoff ont depuis longtemps été introduits dans des logiciels sophistiqués qui permettent de résoudre des circuits d’une grande complexité. Dans ce cas, les éléments sont localisés et il n’est nul besoin pour l’ingénieur de connaître les phénomènes liés à l’électromagnétisme pour concevoir le schéma du circuit et ensuite l’analyser et prédire ses performances. Les phénomènes de rayonnement et couplage étaient plutôt le problème des ingénieurs s’occupant des antennes ou de la propagation des ondes dans divers milieux ou structures.
Pourtant, les concepteurs de dispositifs ont été très vite confrontés à des problèmes liés à deux contraintes. L’augmentation des débits numériques et des fréquences opérationnelles et la miniaturisation des dispositifs pour en réduire leur encombrement et leur poids. C’est alors qu’apparaissent les premiers symptômes remettant en question les modèles traditionnels pour la conception des circuits. Les éléments non seulement ne sont plus des inductances, capacités ou résistances pures mais les interconnexions deviennent des lignes de transmission qui introduisent des retards, des pertes et de la dispersion (distorsion des signaux). De plus, les couplages entre lignes et/ou éléments sont à prendre en compte pour éviter des prédictions de performances erronées. Finalement, les signaux qui se propagent dans les dispositifs ne sont plus assimilables à une tension (ou un courant) localisée, communément utilisée en circuit, mais plutôt à des ondes dont la théorie des lignes constitue une première approximation. D’une manière plus générale, la présence de discontinuités favorise la génération de modes supérieurs qui provoquent des réflexions et un rayonnement dans le cas de structures ouvertes. Tous ces phénomènes doivent être pris en compte plus ou moins rigoureusement dans de nombreux domaines du génie électrique :
caractérisation de guides (situations pour lesquelles le concept de lignes doit être abandonné) ;
caractérisation de discontinuités (aussi la prise en compte de l'effet de répartition des éléments localisés) ;
couplage en champs proches, interférences électromagnétiques et CEM (compatibilité électromagnétique) ;
évaluation du rayonnement, antennes, SER (surface équivalente radar) ;
propagation (réseaux radios intra-muraux ou non).
Cette liste est loin d’être exhaustive et d’autres applications pourraient être mentionnées comme la diffusion par des objets soumis à un rayonnement, imagerie d’objets (problème inverse), optique, caractérisation des matériaux, applications industrielles et biomédicales des ondes.
Ce constat nous fait prendre conscience de l’importance de l’électromagnétisme. Dans toutes les applications mentionnées, une solution réside tout d’abord dans la résolution des équations régissant le champ électromagnétique dont la forme fondamentale a été proposée par Maxwell en 1865. Si celui-ci a eu le génie d’assembler sous la forme d’équations les phénomènes observés expérimentalement, il ne nous a malheureusement pas donné la recette pour les résoudre. Alors que l’activité consistant à essayer de résoudre ces équations a longtemps paru comme un exercice purement académique, elle est devenue un exercice de plus en plus incontournable pour l’analyse et la conception de beaucoup de dispositifs, ce qui est devenu possible avec le développement de méthodes numériques et l’évolution de la puissance des calculateurs. Cependant, l’exigence en termes de coût de calcul est encore prohibitive pour beaucoup de cas. Malgré un doublement des performances des calculateurs tous les six mois durant ces dernières années, la complexité des problèmes croît au même rythme. C’est pourquoi, il existe toujours une intense activité de recherche autour du calcul électromagnétique pour augmenter les performances des modèles.
Déjà abonné ? ouSe connecter
Cet article fait partie de l’offre
Électronique (238 articles en ce moment)
Cette offre vous donne accès à :
Une base complète et actualisée d'articles validés par des comités scientifiques
Un service Questions aux experts et des outils pratiques
Des Quiz interactifs pour valider la compréhension et ancrer les connaissances
Accueil > Ressources documentaires > Électronique - Photonique > Technologies radars et applications > Gestion du spectre électromagnétique > Bases de l’électromagnétisme
Accueil > Ressources documentaires > Technologies de l'information > Technologies radars et applications > Gestion du spectre électromagnétique > Bases de l’électromagnétisme
(1) - NEY (M.) - L’électromagnétisme : Son passé et son avenir dans les télécommunications. - Édition spéciale : Progrès récents en électromagnétisme appliqués aux télécommunications, Annales des Télécommunications, vol. 54, no 1-2, p. 4-18 (1999).
(2) - PURCELL (E.M.) - Électricité et magnétisme. - Berkeley : cours de physique, vol. 2, Armand Colin, Paris (1973).
(3) - JOHNSON (C.C.) - Field and Waves Electrodynamics. - McGraw-Hill, chap. 2 (1962).
(4) - GARDIOL (F.) - Électromagnétisme. - Traité d’électricité, vol. III, Éditions Georgi, St-Saphorin (1977).
(5) - FOURNET (G.) - Électromagnétisme. Différents aspects. - D 1 023 Traité Génie électrique, déc. 1992.
...
Déjà abonné ? ouSe connecter
Entraînez vous autant que vous le voulez avec les quiz d'entraînement.
Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.
Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.
DÉTAIL DE L'ABONNEMENT :
TOUS LES ARTICLES DE VOTRE RESSOURCE DOCUMENTAIRE
Accès aux :
Articles et leurs mises à jour
Nouveautés
Archives
Articles interactifs
Formats :
HTML illimité
Versions PDF
Site responsive (mobile)
Info parution :
Toutes les nouveautés de vos ressources documentaires par email
DES ARTICLES INTERACTIFS
Articles enrichis de quiz :
Expérience de lecture améliorée
Quiz attractifs, stimulants et variés
Compréhension et ancrage mémoriel assurés
DES SERVICES ET OUTILS PRATIQUES
Votre site est 100% responsive,
compatible PC, mobiles et tablettes.
FORMULES
Formule monoposte | Autres formules | |
---|---|---|
Ressources documentaires | ||
Consultation HTML des articles | Illimitée | Illimitée |
Quiz d'entraînement | Illimités | Illimités |
Téléchargement des versions PDF | 5 / jour | Selon devis |
Accès aux archives | Oui | Oui |
Info parution | Oui | Oui |
Services inclus | ||
Questions aux experts (1) | 4 / an | Jusqu'à 12 par an |
Articles Découverte | 5 / an | Jusqu'à 7 par an |
Dictionnaire technique multilingue | Oui | Oui |
(1) Non disponible pour les lycées, les établissements d’enseignement supérieur et autres organismes de formation. |
||
Formule 12 mois 2 295 € HT |
Autres formules |
INTRODUCTION
1 - BASE DE L’ÉLECTRODYNAMIQUE
3 - APPLICATIONS DE L’ÉLECTRODYNAMIQUE
Information
Quiz d'entraînement bientôt disponible
TECHNIQUES DE L'INGENIEUR
L'EXPERTISE TECHNIQUE ET SCIENTIFIQUE
DE RÉFÉRENCE
Avec Techniques de l'Ingénieur, retrouvez tous les articles scientifiques et techniques : base de données, veille technologique, documentation et expertise technique
SOLUTION EN LIGNE
Découvrez KréaCCTP, le 1er logiciel de rédaction de CCTP en ligne. Intuitif, il s’appuie sur une bibliothèque de descriptifs actuelle et fiable.
Automatique - Robotique | Biomédical - Pharma | Construction et travaux publics | Électronique - Photonique | Énergies | Environnement - Sécurité | Génie industriel | Ingénierie des transports | Innovation | Matériaux | Mécanique | Mesures - Analyses | Procédés chimie - bio - agro | Sciences fondamentales | Technologies de l'information
ACCUEIL | A PROPOS | ANNUAIRE AUTEURS | EXPERTS SCIENTIFIQUES | PUBLICITÉ | PLAN DU SITE | MENTIONS LÉGALES | RGPD | COOKIES | AIDE & FAQ | CONTACT
PAIEMENT
SÉCURISÉ
OUVERTURE RAPIDE
DE VOS DROITS
ASSISTANCE TÉLÉPHONIQUE
+33 (0)1 53 35 20 20