Depuis l'apparition et le déploiement des premiers réseaux à fibres optiques à la fin des années 1970, la fabrication des composants actifs et passifs a donné lieu au développement de diverses stratégies de packaging.
Comme en microélectronique, le packaging a une triple fonctionnalité de protection du composant, de dissipation thermique et d'interconnexion avec le milieu extérieur. La particularité de l'optoélectronique réside dans la gestion des entrées et sorties optiques qui ajoute à la conception des boîtiers la problématique du couplage de la puissance optique dans les fibres optiques et la stabilité de ce couplage en fonction de l'environnement (température, humidité, vibration, etc.). Ces contraintes ont donné lieu à l'apparition d'un certain nombre de stratégies originales qui ont abouti, dans les années 1990, à des quasi-standards (boîtiers « Butterfly », coaxial, etc.).
Régi par des lois classiques de l'électromagnétique, le couplage optique est traité par le biais d'un nombre limité de designs. Cependant, les solutions de packaging, réservées pendant longtemps aux seules applications télécom et, de ce fait, contraintes à des niveaux de fiabilité élevés, ont eu recours à des technologies relativement coûteuses (exemple : boîtiers usinés en KovarTM). Par exemple, on considère que le coût de packaging (matière et temps d'assemblage) participe au coût final d'un module d'émission laser télécom à hauteur de 80 %.
La démocratisation des réseaux locaux au niveau de l'accès de l'entreprise, voire de l'abonné depuis les années 2000, a ouvert la voie à de nouvelles solutions de packaging économiques recourant à des technologies émergentes qui seront abordées en fin d'article. Ces technologies, pour la plupart issues de la microélectronique, devraient à terme permettre d'atteindre des coûts similaires à ceux de la micro-électronique, soit environ 20 % du coût d'un composant. Cette tendance est confirmée par le déploiement des liaisons optiques de courte distance (câbles actifs, connexion de périphériques) ainsi que l'émergence des technologies d'optique intégrée (par exemple sur silicium).
Dans cet article, nous décrivons les technologies nécessaires à la réalisation des modules optoélectroniques pour les réseaux fibrés, ainsi que les quelques règles de designs utilisées par les concepteurs. Nous mentionnons également les développements technologiques plus récents nécessaires aux applications émergentes, notamment liés à l'émergence de composants en optique intégrée. Ces développements s'inscrivent dans un cadre normatif brièvement décrit en début d'article...