Imaginons l'émission d'un téléphone portable localisé dans une pièce revêtue de parois métalliques. La fréquence de la source de signaux sinusoïdaux, proche de quelques gigahertz, est donc suffisamment élevée pour que le rayonnement soit assimilable à un grand nombre d'ondes planes dirigées simultanément vers les parois. Les ondes subissent ainsi de multiples réflexions produisant des interférences tantôt destructives ou constructives rappelant la réverbération bien connue des cavités acoustiques. Dans ce contexte physique, certaines configurations dimensionnelles de la cavité contribueront à entretenir des interférences synchrones générant des résonances pouvant engendrer des ondes stationnaires de grande amplitude. Si l'on procède ensuite au calcul de l'amplitude des champs, établie lors des résonances, et sous la forme d'une série composant une somme algébrique de variables complexes, la convergence s'avère très lente et parfois entachée d'instabilités numériques. Une analyse physique plus détaillée montre que les difficultés théoriques ont principalement pour cause le coefficient de réflexion très élevé imposé par la grande conductivité électrique des parois.
Une alternative au raisonnement précédent équivaut également à énoncer, que la puissance transportée par les ondes électromagnétiques émises par le téléphone est dissipée sous forme thermique dans les parois. Sous cette hypothèse, un équilibre doit s'établir entre la puissance active absorbée et la puissance réactive contenue dans les ondes stationnaires associant champs électriques et magnétiques confinés dans la cavité. Cette alternative conduit à la résolution d'une équation aux valeurs propres menant à des champs de grandes amplitudes, stables et distribuées sur un spectre infiniment étendu de fréquences de résonances.
Ainsi abordée et sous l'aspect le plus fondamental, la théorie des cavités électromagnétiques demeure un problème difficile. Toutefois, au prix d'hypothèses physiques dûment justifiées, les raisonnements peuvent être allégés au bénéfice d'une formulation analytique empruntée à la théorie des lignes de transmission, beaucoup plus simple à mettre en œuvre.
C'est la voie qui sera présentement suivie pour construire l'étude des cavités subdivisée en deux parties bien distinctes, tant dans leur présentation que dans leurs contenus.
La partie I développée dans ce premier article concernera le couplage de sources HF au mode TEM, la partie II sera étendue au problème plus général du couplage aux modes TE (ou TM).
L'analyse donnera chaque fois priorité aux fonctionnements sur la fréquence de résonance minimale, encore appelée résonance fondamentale. Des exemples de difficultés croissantes valideront les ordres de grandeurs des diverses variables physiques élaborées par la suite.
La première partie consacrée au couplage au mode TEM comportera deux sections permettant au lecteur d'aborder l'aspect qualitatif des cavités, puis le calcul proprement dit de l'amplitude des champs transportés par le mode TEM.
L'objectif de la première section inspiré du contexte des cavités rencontrées en aéronautique consistera à introduire très brièvement les concepts de modes de propagation, de résonance, de fréquence de coupure et de cavités surdimensionnées.
La seconde section, entièrement dédié à l'étude de la cavité coaxiale sous propagation transverse électromagnétique (TEM), conduira à l'analyse des couplages exercés par un émetteur équipé, selon le cas, d'une petite boucle magnétique ou d'un monopole électrique. Les calculs aboutiront aux inductances et capacités de couplage, nous ferons alors largement usage des propriétés de réciprocité et de dualité électromagnétiques . Une analyse plus approfondie des phénomènes orientera ensuite le problème vers l'étude de l'amortissement de la cavité dû à diverses dissipations énergétiques. On s'intéressera plus particulièrement au rétrocouplage dans la résistance interne des sources d'émission, puis aux pertes engendrées dans les conducteurs constituant la cavité coaxiale.
La compréhension de l'article n'exige pas de connaissances préalables approfondies sur les théories électromagnétiques. Néanmoins, le lecteur trouvera avantage à consulter les articles [E 1 020] et [D 1 322]. Le premier aborde les bases de l'électromagnétisme, le second s'adresse à la théorie des lignes de transmission.