Présentation

Article

1 - GÉNÉRALITÉS

2 - DIFFUSION GAZEUSE

3 - CENTRIFUGATION

4 - PROCÉDÉS AÉRODYNAMIQUES

5 - PROCÉDÉS DE SÉPARATION PAR ÉCHANGE CHIMIQUE

6 - PROCÉDÉS UTILISANT LES LASERS

7 - PROCÉDÉS ÉLECTROMAGNÉTIQUES ET IONIQUES

8 - DIFFUSION THERMIQUE

9 - CONCLUSION GÉNÉRALE

Article de référence | Réf : BN3596 v1

Procédés électromagnétiques et ioniques
Enrichissement de l'uranium - Procédés d'enrichissement

Auteur(s) : Michel ALEXANDRE, Jean-Pierre QUAEGEBEUR

Date de publication : 10 janv. 2009

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Auteur(s)

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Des progrès remarquables ont été accomplis tant dans la diversité que dans les performances des techniques d'enrichissement, depuis la mise en service des premiers calutrons en 1944. Malgré l'effort considérable de recherche et développement entrepris sur de nombreuses techniques, seuls deux procédés industriels restent actuellement en présence pour satisfaire aux besoins en uranium enrichi.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-bn3596


Cet article fait partie de l’offre

Génie nucléaire

(164 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

7. Procédés électromagnétiques et ioniques

Ces méthodes font appel à l'ionisation des espèces présentes dans le produit d'alimentation et elles utilisent des champs électriques et magnétiques pour accélérer et séparer les ions. Elles se caractérisent par des facteurs de séparation relativement élevés et par des flux faibles, limités par les basses densités inhérentes aux faisceaux d'ions et aux plasmas mis en œuvre.

7.1 Spectromètre de masse et calutron

Le procédé de séparation électromagnétique est fondé sur le fait qu'une particule chargée qui se déplace dans un champ magnétique suit une trajectoire curviligne, dont le rayon dépend de la masse de la particule. Les particules les plus lourdes décrivent alors un cercle plus grand que les particules plus légères, en supposant qu'elles aient la même charge et se déplacent à la même vitesse.

La spectrométrie de masse reste la méthode la plus sensible d'analyse isotopique. Elle est aussi l'un des meilleurs moyens de préparation, en petite quantité, d'isotopes séparés de grande pureté, car le facteur de séparation peut dépasser 1 000.

La méthode a été employée [29] pendant la Seconde Guerre mondiale dans l'usine Y12 d'Oak Ridge (figure 28). Elle utilise UCl 4 qui, après vaporisation par chauffage, est ionisé par bombardement électronique. Les ions U + émis à vitesse thermique sont accélérés par voie électrostatique. Par passage dans un champ magnétique, le faisceau des atomes d'uranium ionisés est divisé entre une zone plus proche de la paroi extérieure, qui est appauvrie, et une zone plus proche de la paroi intérieure, qui est enrichie en 235U.

Ce procédé a été abandonné en raison de l'énergie élevée qui doit être communiquée aux ions U + afin de pouvoir focaliser séparément sur le collecteur les faisceaux d'ions des divers isotopes : de l'ordre de 200 MW pour produire 1 kilogramme d'uranium enrichi à 92 %, par an. L'échauffement par impact de ce collecteur et la perturbation des trajectoires par effet de charge limitent...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Génie nucléaire

(164 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Procédés électromagnétiques et ioniques
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - GOWING (M.) -   Britain and atomic energy.  -  (1939-1945), 464 p. (1964).

  • (2) - HEWLETT (R.C.), ANDERSN (O.E.) -   The new world.  -  Penn. State University Press, 766 p. (1962).

  • (3) - BRETON (J.P.) -   Note on the power consumption of a separating element.  -  J. Nucl. Sci. Eng., 1, p. 293 (1974).

  • (4) - MASSIGNON (D.) -   Gaseous diffusion.  -  In Villani (S.) Ed. Uranium enrichment. Topics in applied physics, Springer Verlag, vol. 35, p. 55-182 (1979).

  • (5) - WILKIE (T.) -   Tricastin points the road to energy independence.  -  Nuclear Engineering International, vol. 25, no 305, p. 44, oct. 1980.

  • (6) -   Enrichissement isotopique par diffusion gazeuse.  -  Bull. Inf. Sci. et Techn. du CEA no 206, p. 134 (1975).

  • ...

1 À lire également dans nos bases

BORDIER (G.) - ALEXANDRE (M.) - Séparation de l'uranium par laser. - [BN 3 601] Base « Génie nucléaire » (2003).

ALEXANDRE (M.) - QUAEGEBEUR (J.-P.) - Enrichissement de l'uranium. Généralités et principes. - [BN 3 595] Base « Génie nucléaire » (2009).

HAUT DE PAGE

2 Annuaire

HAUT DE PAGE

2.1 Organismes

USEC Inc. http://www.usec.com/

Nuclear Regulatory Commission http://www.nrc.gov/

Uranium Information Centre http://www.uic.com.au/

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Génie nucléaire

(164 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS