Présentation

Article

1 - INTÉRÊT DE LA LIMITATION DU COURANT

2 - CONTRAINTES DES RÉSEAUX

3 - APPAREIL LIMITEUR SUPRACONDUCTEUR DE COURANT

4 - LIMITEUR RÉSISTIF

5 - QUELQUES EXEMPLES D'EMPLACEMENTS POSSIBLES DANS LES RÉSEAUX ET APPORT

6 - SUPRACONDUCTEURS POSSIBLES POUR LA LIMITATION

7 - EXEMPLES DE RÉALISATION

8 - CONCLUSIONS

Article de référence | Réf : D3662 v2

Limiteur résistif
Limiteur supraconducteur de courant de défaut

Auteur(s) : Pascal TIXADOR

Relu et validé le 26 janv. 2024

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

La transition naturelle, et quasi instantanée d'un supraconducteur d'un état sans résistance à un état dissipatif par dépassement d'un certain courant, donne au supraconducteur la fonction unique et intrinsèque de limiter les courants de défaut. Les différents limiteurs supraconducteurs sont passés en revue, y compris ceux qui utilisent seulement l'absence des pertes Joule d'un supraconducteur. Est présenté le dimensionnement de base d'un limiteur supraconducteur résistif. Après avoir exposé plusieurs emplacements des limiteurs supraconducteurs dans les réseaux électriques, quelques projets récents ou en cours sont décrits.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Superconducting fault current limiter

The natural and almost instantaneous transition of a superconductor from a non-resistive state to a dissipative state when exceeding a given current provides the superconductor with its unique and intrinsic function of limiting fault currents. The various superconducting limiters are reviewed, including those that only use the absence Joule losses in a superconductor. The basic design of a superconducting resistive fault current limiter is presented. After having described several locations for superconducting limiters in electrical grids, this article presents certain recent and ongoing projects.

Auteur(s)

  • Pascal TIXADOR : Professeur à Grenoble INP - Laboratoire de Génie électrique de Grenoble (G2Elab) et Institut Néel, Grenoble

INTRODUCTION

Le limiteur de courant de défaut est le « Graal » pour les concepteurs de réseaux électriques. Cet appareil permet de concevoir un réseau idéal, c'est-à-dire avec une puissance de court-circuit infinie théoriquement, mais avec des courants de défauts maitrisés grâce justement au limiteur. Or, l'augmentation de la puissance de court-circuit des réseaux est une demande actuelle forte pour notamment améliorer la qualité de tension et augmenter la part maximale des énergies distribuées, renouvelables entre autres. Il n'existe pas aujourd'hui de solution industrielle satisfaisante comme limiteur de courant de défaut en haute tension en particulier.

Un supraconducteur possède une fonction limitation de courant intrinsèque via sa caractéristique fortement non linéaire de son champ électrique en fonction du courant. Nul ou extrêmement faible en dessous d'un certain courant ajustable, son courant critique, le champ électrique augmente très fortement au-delà de I. Sans pratiquement de résistance en-dessous de I, donc transparent pour le réseau, un élément supraconducteur devient automatiquement et naturellement, sans aucune action extérieure et pratiquement immédiatement, une résistance élevée au-dessus de Ic qui limite le courant en moins d'une milliseconde. Le limiteur supraconducteur garantit l'absence de courant au-delà d'une certaine valeur , réduisant le surdimensionnement coûteux de nombreux appareils, calculés sinon pour supporter les courants de court-circuit, nettement supérieurs à . Il est intrinsèquement sûr. Sa résistance disparaît à nouveau après un certain temps dès qu'il est isolé du défaut. Un limiteur supraconducteur de courant de défaut apporte donc une solution technique particulièrement séduisante. Les conducteurs supraconducteurs à haute température critique de 2e génération, en cours de développement industriel, renforcent l'attractivité des limiteurs supraconducteurs.

Plusieurs limiteurs supraconducteurs de courant de défaut ont été mis en service avec succès dans le réseau européen notamment. Il reste à démontrer la viabilité économique du limiteur supraconducteur et à augmenter le retour d'expérience sur cet appareil, véritable rupture technologique.

Le lecteur se référera utilement aux articles [D 2 702], [D 2 705] et [B 2 380].

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

cryogenic   |   superconductivity   |   current limitation

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-d3662


Cet article fait partie de l’offre

Conversion de l'énergie électrique

(275 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

4. Limiteur résistif

4.1 Schéma électrique

Les contraintes du réseau, en particulier la nécessité d'avoir un courant de défaut pas trop limité, complexifient un peu le schéma de base en introduisant en particulier une impédance aux bornes de l'élément supraconducteur (figure 10). Cette impédance n'intervient qu'en régime de limitation puisqu'elle est sinon court-circuitée par le supraconducteur.

Nous verrons que le volume supraconducteur est proportionnel au courant et à la tension en régime de court-circuit ainsi qu'à la durée de limitation. Il est par conséquent intéressant d'avoir un courant réduit dans le supraconducteur en régime de limitation, ce qui peut poser des problèmes pour les protections ampéremétriques. L'impédance shunt réduit l'impédance équivalente du limiteur et permet d'ajuster le courant de limitation aux exigences du réseau.

Par ailleurs, cette impédance réduit la tension aux bornes du supraconducteur en régime de limitation ce qui réduit le volume supraconducteur nécessaire. L'expression de la tension aux bornes de l'élément supraconducteur est :

( 4 )

Le deuxième disjoncteur D2 (figure 10) permet de non seulement réduire le volume supraconducteur nécessaire en isolant le plus rapidement possible le supraconducteur, mais aussi de remplir certaines exigences du réseau comme des fermetures rapides après défaut (cycle OF). Seul le disjoncteur D1 est alors fermé tandis que le disjoncteur D2 reste ouvert jusqu'à ce que le supraconducteur ait récupéré. Pendant ce laps de temps, le régime est néanmoins dégradé : le limiteur n'est pas totalement transparent pour le réseau, il présente alors l'impédance Zshunt . Le disjoncteur D1 autorise enfin un fonctionnement en mode dégradé du limiteur en cas de défaillance du supraconducteur (D2 ouvert). D1 doit suivre les cycles classiques OF-OFO... Son pouvoir de coupure est réduit.

Compte tenu du fonctionnement du shunt pendant des durées importantes, celui-ci est souvent une inductance qui permet de réduire les pertes Joule même si elle peut générer...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Conversion de l'énergie électrique

(275 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Limiteur résistif
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - NOE (M.), STEURER (M.) -   High-temperature superconductor fault current limiters : concepts, applications, and development status.  -  Superconductor Science and Technology, vol. 20, p. R15-R29 (2007).

  • (2) - SCHMITT (H.), AMON FILHO (J.), ADAPA (R.), BRAUN (D.), BRISSETTE (Y.), BUCHS (G.), CVORIC (D.), DARMANN (F.), EDWARDS (K.), FERNANDEZ (P.), FOLTS (D.), HARTUNG (K.H.), HYUN (O.), JÄGER (J.), IIOKA (D.), KAMEDA (H.), KIM (Y.), KLEIMAIER (M.), LAMBERT (F.), MARTINI (L.), NOE (M.), PARK (K.), RASOLONJANAHARY (J.-L.), STEURER (M.), VAN DER BURGT (J.) -   Application and feasibility of fault current limiters in power systems.  -  CIGRE, Technical Brochure, p. 497 (2012).

  • (3) - HOBL (A.), GOLDACKER (W.), DUTOIT (B.), MARTINI (L.), PETERMANN (A.), TIXADOR (P.) -   Design and production of the ECCOFLOW resistive fault current limiter.  -  IEEE Transactions on Applied Superconductivity, vol. 23, p. 5601804 (2013).

  • (4) - DOMMERQUE (R.), KRÄMER (S.), HOBL (A.), BÖHM (R.), BLUDAU (M.), BOCK (J.), KLAUS (D.), PIEREDER (H.), WILSON (A.), KRÜGER (T.), PFEIFFER (G.), PFEIFFER (K.), ELSCHNER (S.) -   First commercial medium voltage superconducting fault-current limiters: production, test and installation.  -  Superconductor Science and Technology, vol. 23, 034020, 6 p. (2010).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Conversion de l'énergie électrique

(275 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS