La dynamique moléculaire (DM) est une technique numérique permettant de simuler le comportement des matériaux à l’échelle atomique. Depuis la fin de la Seconde Guerre mondiale, cette technique a connu, au cours des années, un essor directement lié à l’amélioration des performances des calculateurs. La dynamique moléculaire est utilisée pour la recherche. Elle permet d’étudier et de prédire des propriétés physiques, chimiques et mécaniques de matériaux dans des conditions telles que l’observation expérimentale est très délicate voire impossible : échelle spatiale trop petite, phénomènes extrêmement rapides, températures et pressions très élevées, matériaux dangereux (radioactifs, corrosifs).
Les nouvelles technologies permettent non seulement d’étudier la matière à l’échelle atomique, mais aussi de la modeler pour fabriquer des nanocomposants électroniques, optiques, thermiques et mécaniques. Grâce aux ordinateurs actuels et aux logiciels existants, la dynamique moléculaire est devenue un outil facilement accessible. Les chercheurs et les ingénieurs disposent donc de moyens expérimentaux et théoriques pour relever les défis propres aux nanotechnologies dont les enjeux sont majeurs. Concernant les transferts thermiques il s’agit de maîtriser :
-
les transferts thermiques par conduction dans les semi-conducteurs et les matériaux composites ;
-
les échanges thermiques dans les systèmes bi et triphasiques (phénomènes d’évaporation, de condensation et de formation de ménisque) ;
-
les phénomènes de transferts thermiques à l’interface entre solides en contact ;
-
les procédés d’élaboration des matériaux afin de maîtriser parfaitement leurs propriétés.
Le présent article a pour objectif de faire découvrir les coulisses de la dynamique moléculaire. Pour l’ingénieur, il s’agit de comprendre les fondements de la dynamique moléculaire pour juger de son utilité et de ses applications potentielles. La technique en elle-même est relativement simple et peut être mise en œuvre facilement. En effet, la dynamique moléculaire est basée sur l’intégration de l’équation fondamentale de la dynamique proposée par Newton. Quelques schémas d’intégration les plus courants sont présentés. Les principes de base pour la mise en œuvre de la dynamique moléculaire sont expliqués. Cependant, si seul cet aspect de la dynamique moléculaire était abordé, une grande partie des questions qui doivent être posées pour une étude sérieuse seraient omises. En schématisant, la dynamique moléculaire est une étape dans le processus de simulation de la matière qui comprend :
-
en amont, la détermination et le choix de potentiels d’interaction. Ce point est discuté pour mettre en évidence les limitations de la dynamique moléculaire. Pour un élément donné, en théorie, le potentiel est unique. Il permet de simuler la matière dans tous ses états : solide, liquide, gazeux, cristallin ou amorphe. En fait, les potentiels sont élaborés pour simuler au mieux la matière dans un objectif précis, ce qui donne lieu à différents potentiels pour un même élément ;
-
en aval, l’utilisation de la physique statistique pour calculer les propriétés des systèmes étudiés. Ce point fait l’objet de l’article « Thermique à l’échelle submicronique. Conduction thermique aux nanoéchelles » Thermique à l’échelle submicronique- Conduction thermique aux nanoéchelles
Le lecteur intéressé désirant connaître les applications de la dynamique moléculaire évoquées ci-dessus pourra consulter en