RECHERCHEZ parmi plus de 10 000 articles de référence ou pratiques et 4 000 articles d'actualité
PAR DOMAINE D'EXPERTISE
PAR SECTEUR INDUSTRIEL
PAR MOTS-CLES
NAVIGUER DANS LA
CARTOGRAPHIE INTERACTIVE
DÉCOUVREZ toute l'actualité, la veille technologique GRATUITE, les études de cas et les événements de chaque secteur de l'industrie.
Article précédent
Voiture connectéeArticle de référence | Réf : H5010 v1
ARTICLE INTERACTIF
Auteur(s) : Fabien MOUTARDE
Date de publication : 10 févr. 2019
Article suivant
Apprentissage statistique non superviséCet article fait partie de l’offre
Innovations technologiques (174 articles en ce moment)
Cette offre vous donne accès à :
Une base complète et actualisée d'articles validés par des comités scientifiques
Un service Questions aux experts et des outils pratiques
Présentation
Lire l'article interactif
Bibliographie & annexes
Quiz & Test
Inclus dans l'offre
Il existe un grand nombre de modèles et algorithmes d’apprentissage statistique supervisé, et cet article s’est limité à présenter les principaux. Comme il a été indiqué, chacun d’eux possède des avantages et des inconvénients. Le choix, pour une application donnée, d’une technique plutôt qu’une autre est donc toujours délicat. L’idéal serait normalement d’essayer et comparer au moins les principales, mais cela peut représenter un travail important. D’autant qu’il faut s’assurer de trouver pour chacune les valeurs optimales des hyper-paramètres parfois nombreux, en utilisant une base de validation (ou la validation croisée).
Toutefois, les caractéristiques de données à traiter peuvent guider dans le choix de modèle (figure 32) :
si les entrées sont des images, les réseaux convolutionnels sont a priori la méthode susceptible de donner les meilleurs résultats ; mais il faut soit disposer d’un très grand nombre d’exemples étiquetés, soit faire de l’apprentissage par transfert en réutilisant comme base un convNet pré-appris sur ImageNet ;
inversement, on ne peut a priori PAS utiliser un Réseau Convolutionnel sur des entrées qui ne sont pas organisées en grille (ni image, ni série temporelle, ni voxels3D) ;
si les entrées sont structurées (graphes, etc.), la capacité des SVM à gérer cela via un noyau adapté peut être un avantage ;
si une proportion importante des entrées est symbolique (valeurs discrètes), alors utiliser un Arbre de Décision ou une Forêt Aléatoire peut éviter de devoir définir un encodage numérique de ces entrées symboliques ;
s’il s’agit de classification avec un grand nombre de classes, alors le principe intrinsèquement « bi-classe » des SVM et du boosting peuvent compliquer l’apprentissage (nécessité par exemple d’apprendre N classifieurs binaires « un contre tous » s’il y a N classes) ;
si les entrées sont de très grande dimension, et qu’il y a un grand nombre d’exemples, l’apprentissage des SVM peut devenir problématiquement long ; inversement, la sélection aléatoire d’un sous-ensemble restreint de dimensions pour chaque arbre d’une Forêt Aléatoire peut être avantageuse ;
si...
Vous êtes abonné à cette offre ?
Connectez-vous !
Vous souhaitez découvrir cette offre ?
Cet article est inclus dans l'offre :
INNOVATIONS TECHNOLOGIQUES
(1) - RUMELHART (D.E.), HINTON (G.E.), WILLIAMS (R.J.) - Learning representations by back-propagating errors. - Nature, 323 (6088) : 533-536 (1986).
(2) - CYBENKO (G.) - Approximation by superpositions of a sigmoidal function. - Mathematics of Control, Signals, and Systems, 2(4), 303-314 (1989).
(3) - QUINLAN (J.R.) - Induction of Decision Trees. - Machine Learning 1: 81-106 (1986).
(4) - BREIMAN (L.), FRIEDMAN (J.H.), OLSHEN (R.A.), STONE (C.J.) - Classification and regression trees. - Monterey, CA : Wadsworth & Brooks/Cole Advanced Books & Software (1984).
(5) - BREIMAN (L.) - Random Forests. - Machine Learning 45 (1) : 5-32 (2001).
(6) - FREUND (Y.), SCHAPIRE (R.) - A decision-theoretic generalization of on-line...
Pour les algorithmes « classiques » d’apprentissage statistique, l’outil logiciel le plus riche (contenant des implémentations de la pluparts des modèles et algorithmes) et très couramment utilisé est :
Sci-Kit Learn (librairie Python), http://scikit-learn.org
Pour l’apprentissage profond de réseaux convolutionnels, les principales librairies utilisées (qui intègrent toutes une utilisation transparente des GPUs sur les ordinateurs qui en ont) sont :
Lasagne, http://lasagne.readthedocs.io
TensorFlow, https://www.tensorflow.org
KERAS, https://keras.io
PyTorch, https://pytorch.org/
NB : tous ces outils logiciels sont gratuits
HAUT DE PAGE
Vous êtes abonné à cette offre ?
Connectez-vous !
Vous souhaitez découvrir cette offre ?
Cet article est inclus dans l'offre :
INNOVATIONS TECHNOLOGIQUES
Entraînez vous autant que vous le voulez avec les quiz d'entraînement.
Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.
Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.
DÉTAIL DE L'ABONNEMENT :
TOUS LES ARTICLES DE VOTRE RESSOURCE DOCUMENTAIRE
Accès aux :
Articles et leurs mises à jour
Nouveautés
Archives
Formats :
HTML illimité
Versions PDF
Site responsive (mobile)
Info parution :
Toutes les nouveautés de vos ressources documentaires par email
DES SERVICES ET OUTILS PRATIQUES
Archives
Technologies anciennes et versions
antérieures des articles
Votre site est 100% responsive,
compatible PC, mobiles et tablettes.
FORMULES
Formule monoposte | Autres formules | |
---|---|---|
Ressources documentaires | ||
Consultation HTML des articles | Illimitée | Illimitée |
Téléchargement des versions PDF | 5 / jour | Selon devis |
Accès aux archives | Oui | Oui |
Info parution | Oui | Oui |
Services inclus | ||
Questions aux experts (1) | 4 / an | Jusqu'à 12 par an |
Articles Découverte | 5 / an | Jusqu'à 7 par an |
Dictionnaire technique multilingue | Oui | Oui |
(1) Non disponible pour les lycées, les établissements d’enseignement supérieur et autres organismes de formation. |
||
Formule 12 mois 1 220 € HT |
Autres formules |
1 - CADRE GÉNÉRAL DE L’APPRENTISSAGE ARTIFICIEL STATISTIQUE
2 - TECHNIQUES « CLASSIQUES » D’APPRENTISSAGE SUPERVISÉ
3 - APPRENTISSAGE PROFOND (DEEP-LEARNING)
4 - SYNTHÈSE COMPARATIVE
Information
Quiz d'entraînement bientôt disponible
TECHNIQUES DE L'INGENIEUR
L'EXPERTISE TECHNIQUE ET SCIENTIFIQUE
DE RÉFÉRENCE
ÉDITION - FORMATION - CONSEIL :
Avec Techniques de l'Ingénieur, retrouvez tous les articles scientifiques et techniques : base de données, veille technologique, documentation et expertise technique
LOGICIELS
Automatique - Robotique | Biomédical - Pharma | Construction et travaux publics | Électronique - Photonique | Énergies | Environnement - Sécurité | Génie industriel | Ingénierie des transports | Innovation | Matériaux | Mécanique | Mesures - Analyses | Procédés chimie - bio - agro | Sciences fondamentales | Technologies de l'information
ACCUEIL | A PROPOS | EXPERTS SCIENTIFIQUES | NOUS REJOINDRE | PUBLICITÉ | PLAN DU SITE | CGU | CGV | MENTIONS LÉGALES | RGPD | AIDE | FAQ | NOUS CONTACTER
PAIEMENT
SÉCURISÉ
OUVERTURE RAPIDE
DE VOS DROITS
ASSISTANCE TÉLÉPHONIQUE
+33 (0)1 53 35 20 20