Présentation

Article

1 - MASSE VOLUMIQUE

  • 1.1 - Influence de la température sur la masse volumique
  • 1.2 - Influence de la pression sur la masse volumique

2 - VISCOSITÉ

  • 2.1 - Viscosité dynamique
  • 2.2 - Viscosité cinématique
  • 2.3 - Viscosité relative, spécifique, intrinsèque
  • 2.4 - Viscosités empiriques ou relatives
  • 2.5 - Dissipation de l’énergie et perte de charge
  • 2.6 - Limites d’écoulements. Nombre de Reynolds
  • 2.7 - Comportements rhéologiques
  • 2.8 - Influence de la température sur la viscosité
  • 2.9 - Influence de la pression sur la viscosité
  • 2.10 - Autres principaux paramètres influant sur la viscosité

3 - DÉGRADATION THERMIQUE ET OXYDANTE

4 - STABILITÉ À L’HYDROLYSE

5 - PROPRIÉTÉS LUBRIFIANTES

6 - COMPRESSIBILITÉ. DILATATION. CAPACITÉ THERMIQUE

  • 6.1 - Coefficient de compressibilité. Module
  • 6.2 - Coefficient volumique de dilatation thermique
  • 6.3 - Capacité thermique (massique) à pression constante

7 - RÉSISTANCE AU FEU

8 - OCCLUSION D’AIR ET MOUSSAGE

Article de référence | Réf : BM6012 v1

Compressibilité. Dilatation. Capacité thermique
Fluides hydrauliques - Facteurs d’influence

Auteur(s) : Gérard DALLEMAGNE

Date de publication : 10 janv. 1999

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Auteur(s)

  • Gérard DALLEMAGNE : Ingénieur au département Matériaux - Centre commun de recherches Louis-Blériot de l’Aérospatiale

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Pour un fluide hydraulique, il est demandé avant tout une bonne stabilité thermique et, par la suite, un bon pouvoir lubrifiant, une bonne courbe de viscosité, un bon facteur de compressibilité, une bonne résistance à l’oxydation. Il est bien certain que la résistance au feu est une caractéristique utile pour un fluide hydraulique qui fonctionne sous haute pression et, en particulier, dans un circuit d’avion où il circule en tous les points de la structure.

Cet article étudie l’influence de ces propriétés sur la qualité des fluides.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-bm6012


Cet article fait partie de l’offre

Fonctions et composants mécaniques

(212 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

6. Compressibilité. Dilatation. Capacité thermique

6.1 Coefficient de compressibilité. Module

La notion de compressibilité et son expression chiffrée ont pris une importance sans cesse grandissante avec le développement des servomécanismes hydrauliques. La compressibilité peut se définir par l’expression différentielle suivante [25] :

avec :

C
 : 
compressibilité
V0
 : 
volume initial du fluide
dV/dp
 : 
taux de variation de volume en fonction de la pression.

Cependant, pour faciliter les calculs, il est préférable d’utiliser ce qu’en anglais on appelle bulk modulus que l’on peut traduire par le module de compressibilité qui est l’inverse de la compressibilité.

On peut mesurer le module de compressibilité par des méthodes statiques et dynamiques.

En principe, les méthodes statiques reviennent à mesurer, par des moyens mécaniques, les modifications relatives du volume en fonction de la température du fluide ou des variations de la pression dans des conditions isothermes d’expérience.

Les méthodes dynamiques se basent sur la mesure de pulsations soniques dans le fluide maintenu dans un état strictement isentropique.

Qu’il s’agisse de module statique ou dynamique, on distingue le module de compressibilité sécant (secant bulk modulus) et le module de compressibilité tangent (tangent bulk modulus).

HAUT DE PAGE

6.1.1 Compressibilité isotherme

Bien que les fluides que nous utilisons se comportent, pour les calculs de puissance, travail, etc., comme des liquides incompressibles, ils sont, en fait, compressibles, c’est-à-dire que, sous l’effet d’une augmentation de pression, leur volume diminue.

  • On définit le coefficient de compressibilité

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Fonctions et composants mécaniques

(212 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Compressibilité. Dilatation. Capacité thermique
Sommaire
Sommaire

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Fonctions et composants mécaniques

(212 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS