Présentation
Auteur(s)
-
Jean-Michel MERMET : Ingénieur de l’École nationale supérieure de chimie de Strasbourg - Docteur ès sciences - Directeur de recherche au CNRS Laboratoire des sciences analytiques de l’université Claude-Bernard (Lyon I)
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
De nombreuses méthodes d’analyse élémentaire sont fondées sur l’utilisation de spectres de raies atomiques. On peut citer la spectrométrie d’émission atomique avec comme sources de radiation possibles la flamme, l’arc, l’étincelle, la décharge luminescente et les plasmas (en particulier les plasmas à couplage inductif ou ICP), la spectrométrie d’absorption atomique avec comme sources d’atomisation la flamme et le four, et la spectrométrie de fluorescence atomique. Pour pouvoir utiliser une raie d’un spectre, il est nécessaire de pouvoir l’isoler à l’aide d’un système qui va disperser la lumière en fonction de la longueur d’onde. Si les deux derniers types de spectrométrie permettent de s’affranchir presque totalement des interférences spectrales, il n’en est pas de même pour la spectrométrie d’émission. Il faut alors que la raie sélectionnée pour l’analyse soit séparée des autres raies présentes dans le spectre d’émission. Le rôle du système dispersif devient alors crucial, en particulier au niveau de la versatilité de la sélection de la raie suivant le problème analytique, de la résolution permettant de séparer la raie et du domaine de longueurs d’onde accessible par le système. Les différents types de spectromètre, les réseaux de diffraction, plan, concave, échelle, avec leurs propriétés, les différents montages optiques, les concepts de résolution théorique et pratique, et la mesure de l’intensité nette d’une raie spectrale seront décrits dans cet article.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Électronique - Photonique > Optique Photonique > Fondamentaux de l'optique > Systèmes dispersifs en spectrométrie atomique > Montage optique à réseau plan
Cet article fait partie de l’offre
Techniques d'analyse
(287 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Montage optique à réseau plan
3.1 Réseau plan conventionnel
Les réseaux plans conventionnels sont utilisés uniquement pour les monochromateurs. Des miroirs concaves sont alors nécessaires pour la collimation d’entrée et de sortie afin d’obtenir des faisceaux parallèles. Quand un seul miroir concave est utilisé (sur deux parties différentes), on obtient le montage de Ebert. Quand deux miroirs concaves sont utilisés, on obtient le montage de Czerny-Turner (figure 5). La focale f des miroirs définit la focale du système dispersif, et l’inverse 1/f définit l’ouverture du système. Le choix des raies est obtenu par rotation du réseau sur son axe. Dans ce cas, l’équation du réseau est utilisée pour calculer les angles de diffraction, avec α – β = 2i = Cte (voir § ). La valeur de i est liée à la focale et à la distance entre les fentes d’entrée et de sortie (tableau 1).
Dans les premiers monochromateurs, l’entraînement était effectué par un moteur actionnant un pas de vis. Pour tenir compte de l’influence de la fonction sinus dans la formule des réseaux, un dispositif appelé barre sinus était utilisé pour transformer la rotation du réseau en fonction sinus, de telle façon qu’un compteur placé sur l’axe de rotation du moteur indiquait directement la valeur de la longueur d’onde. L’utilisation d’ordinateur pour gérer le déplacement en longueur d’onde permet de calculer quelle doit être la rotation du moteur (souvent du type pas à pas) pour obtenir une longueur d’onde donnée, ce qui évite l’emploi d’une barre sinus, source de dérive et de jeu. Le réseau est généralement fixé sur une roue dentée, elle-même entraînée par une vis sans fin actionnée par le moteur. On parle dans ce cas d’entraînement semi-direct. Il existe un dispositif d’entraînement direct de la rotation du réseau. L’axe du réseau est commun avec l’axe d’un moteur galvanométrique.
HAUT DE PAGE3.2 Réseau...
Cet article fait partie de l’offre
Techniques d'analyse
(287 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Montage optique à réseau plan
BIBLIOGRAPHIE
-
(1) - ZANDER (A.T.), MILLER (M.H.), HENDRICK (M.S.), EASTWOOD (D.) - Spectral efficiency of the Spectraspan III Echelle grating spectrometer. - Appl. Spectrosc. 39, p. 1 (1985).
-
(2) - BILHORN (R.B.), BONNER DENTON (M.) - Elemental analysis with a plasma emission echelle spectrometer employing a charge injection device (CID) detector. - Appl. Spectrosc. 43, p. 1 (1989).
-
(3) - PILON (M.J.), BONNER DENTON (M.), SCHLEICHER (R.G.), MORAN (P.M.), SMITH, Jr (S.B.) - Evaluation of a new array detector atomic emission spectrometer for inductively coupled plasma atomic emission spectrometry. - Appl. Spectrosc. 44, p. 1613 (1990).
-
(4) - SCHEELINE (A.), BYE (C.A.), MILLER (D.L.), RYNDERS (S.W.), CLAVIN OWEN Jr (R.) - Design and characterization of an echelle spectrometer for fundamental and applied emission spectrochemistry. - Appl. Spectrosc. 45, p. 334 (1991).
-
(5) - BARNARD (T.W.), CROCKETT (M.J.), IVALDI (J.C.), LUNDBERG (P.L.) - Design and evaluation of an echelle grating optical system for ICP-OES. - Anal. Chem. 65, p. 1225 (1993).
-
...
DANS NOS BASES DOCUMENTAIRES
-
Spectrométrie d’absorption atomique.
-
Spectrofluorimétrie moléculaire et spectrométrie de fluorescence atomique.
ANNEXES
1.1 Constructeurs d’ensembles source de rayonnement et système dispersifs
GBC
Hitachi
Jobin-Yvon/Horiba
Leeman
Perkin-Elmer Instruments
Shimadzu
Spectro Analytical
Thermo Optek
Varian, Inc
HAUT DE PAGE1.2 Constructeurs de systèmes dispersifs
Jobin-Yvon/Horiba
Acton Research
HAUT DE PAGECet article fait partie de l’offre
Techniques d'analyse
(287 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive