Les modèles aléatoires ont démontré leur efficacité dans de nombreuses applications. Les raisons de fond de ces modèles et de leur utilité sont le sujet de réflexions voire de controverses, où l'on peut distinguer quelques grandes lignes : i) la « physique » est aléatoire, c'est le modèle de la mécanique quantique, où l'aléa est présent dès le niveau microscopique ; ii) la physique est déterministe au niveau microscopique, mais le passage au macroscopique conduit à un comportement qui est décrit par un modèle aléatoire, c'est le cas de la physique statistique ; iii) la physique est déterministe, mais la complexité du phénomène est telle qu'un modèle aléatoire est le plus efficace (cas du lancer d'un dé) ; iv) les incertitudes et méconnaissances qui existent sur une réalité, elle-même aléatoire ou déterministe, sont représentées de façon aléatoire.
Le cadre formel est celui des espaces probabilisés, sur lesquels on définit des applications dans l'ensemble des réels appelées « variables aléatoires », puis des collections de variables aléatoires appelées « processus aléatoires ». Ceux-ci sont donc à la base de l'ingénierie dans des domaines variés : physique, économie, finance, biologie, etc.
Cet article présente les fondements des processus aléatoires et les illustre sur des exemples concrets.
Le premier chapitre contient un rappel des bases des probabilités, les définitions des variables et processus aléatoires, ainsi que leurs principales propriétés, comme la covariance, la stationnarité, la représentation spectrale. Le deuxième chapitre donne des exemples de processus aléatoires fondamentaux, dont l'utilisation a un caractère universel, comme le processus de Poisson ou les chaînes de Markov. Le troisième chapitre décrit des transformations de processus aléatoires, comme le filtrage, le seuillage, l'identification. Enfin cinq chapitres sont consacrés chacun à une application particulière (radar, image, turbulences atmosphériques et optiques, maintenance, séries financières), avec comme objectif d'illustrer les développements précédents, mais aussi de décrire certaines techniques spécifiques.
Les développements mathématiques sont aussi réduits que possible, bien que certains raisonnements soient explicités lorsque cela semble nécessaire.