Mvec l'accroissement du nombre de systèmes électroniques embarqués, l'évolution constante de leur complexité d'une part et l'augmentation du nombre de perturbateurs potentiels d'autre part, il devient difficile mais indispensable de maîtriser et d'assurer le bon fonctionnement des systèmes. Ceci est d'autant plus vrai que ces systèmes sont souvent destinés à augmenter le confort mais aussi la sécurité, par exemple dans les domaines aéronautique et automobile. De plus, on comprend bien que, même si tout est mis en œuvre pour vérifier les bonnes conditions de fonctionnement en environnement électromagnétiquement perturbé lors de la mise sur le marché du produit, il est indispensable d'assurer celles-ci tout au long de sa durée de vie et donc de pouvoir évaluer périodiquement l'évolution des marges de sécurité annoncées initialement.
Pour toutes ces raisons, aujourd'hui et pendant toutes les phases du cycle de vie du produit, un certain nombre d'analyses reposent sur la simulation numérique ou l'analyse physique des phénomènes décrits mathématiquement et résolus avec l'aide des techniques de calcul numérique. En Compatibilité Electromagnétique (CEM) des systèmes, depuis la conception préliminaire en passant par la conception détaillée, le choix de technologies, les spécifications aux différents fournisseurs, la qualification des sous-ensembles, la certification du système complet, jusqu'à la maintenance en conditions opérationnelles, de nombreuses phases peuvent être accompagnées de raisonnements qui s'appuient sur la résolution des équations régissant le comportement des champs électrique et magnétique dans l'espace et le temps : les équations de Maxwell.
Les équations de Maxwell, initialement écrites sous une forme différentielle ou intégrale dans le domaine temporel ou fréquentiel, peuvent prendre plusieurs formes suivant la technique de résolution choisie. Leur numérisation et la résolution d'un problème demandent l'élaboration d'un algorithme numérique reposant sur une technique donnée. Toutefois, la résolution d'un problème électromagnétique n'est pas simple et ce pour plusieurs raisons :
-
choix du modèle physique : le modèle est essentiellement lié à la vision qu'en a le modélisateur ; suivant le niveau de finesse (jusqu'à quelle échelle aller ?), le modèle sera plus ou moins complexe et, de ce fait, ne reflétera pas forcément les mêmes phénomènes ;
-
choix d'une discrétisation : pour un même modèle, la discrétisation va plus ou moins permettre de suivre les variations des champs et donnera donc un résultat différent suivant le cas ;
-
méconnaissance de certains paramètres physiques (permittivités...) : en simulation numérique, ces paramètres doivent être renseignés, le modélisateur doit donc faire un choix qui peut être dicté par une étude de sensibilité des observables face à une variabilité de ces paramètres.
La construction de modèles numériques demande naturellement leur validation, soit par rapport à des résultats connus soit par rapport à des tests physiques en laboratoire et/ou sur le système. Au niveau du cycle de vie, la construction de modèles doit suivre en parallèle le déroulement des diverses campagnes d'essais physiques. Pour pouvoir prendre en compte lors du cycle de conception toutes les modifications éventuelles qui peuvent apparaître au fur et à mesure de l'avancement du projet, les boucles de simulation doivent être suffisamment souples pour pouvoir répondre aux questions soulevées le plus tôt possible. C'est pour cette raison qu'un grand effort est porté aujourd'hui sur l'automatisation des procédures de « nettoyage » mais aussi sur la parallélisation dans la résolution des modèles. La gestion de configurations des modèles issus de ces étapes itératives devient impérative de façon à assurer la cohérence avec le dernier statut en termes de design.
Par ailleurs, lors du déroulement d'un projet de conception, il peut arriver que des contraintes, liées à d'autres métiers comme la thermique, la mécanique ou bien simplement une évaluation des coûts ou de poids, ou un changement de solutions techniques, viennent questionner le choix d'une solution de protection CEM. Cette complexité supplémentaire a donné lieu à l'élaboration de techniques hybrides reposant, entre autres, sur la suppression de la dépendance spatiale des équations aux dérivées partielles. Cette compression spatiale du problème permet ensuite de simuler, à un coût moins élevé, des changements sur les conditions aux limites du système qui permettent d'interfacer les modèles avec d'autres physiques au sein du même simulateur.
Enfin, le dernier élément de la chaîne d'un système complexe concerne les composants. Dans ce contexte nous décrirons les avancées autour du format IBIS (Input/Output Buffer Information Specification) permettant de conduire des simulations de l'intégrité du signal entre composants, avec en particulier la prise en compte des bus de données rapides.