Article

1 - COUPLEURS, COMMUTATEURS, ATTÉNUATEUR, DÉPHASEURS

  • 1.1 - Cellules de déphasage
  • 1.2 - Coupleurs
  • 1.3 - Interrupteurs, commutateurs
  • 1.4 - Atténuateurs
  • 1.5 - Déphaseurs quantifiés
  • 1.6 - Déphaseurs analogiques et vectoriels

2 - AMPLIFICATEUR EN PETIT SIGNAL

  • 2.1 - Montages de transistors à effet de champ et bipolaires
  • 2.2 - Amplificateurs à bande étroite à un et deux étages
  • 2.3 - Amplificateurs à large bande
  • 2.4 - Amplificateurs distribués
  • 2.5 - Amplificateurs à faible bruit
  • 2.6 - Amplificateur : architecture de type différentiel

3 - AMPLIFICATEUR DE PUISSANCE

  • 3.1 - Fonctionnement en classe A. Définitions
  • 3.2 - Load pull et source pull
  • 3.3 - Classes de fonctionnement
  • 3.4 - Non-linéarités
  • 3.5 - Conception d’un amplificateur de puissance
  • 3.6 - Structures d’amplificateurs de puissance

4 - CONCLUSION

5 - GLOSSAIRE – DÉFINITIONS

Article de référence | Réf : E1428 v2

MMIC - Déphaseurs et amplificateurs

Auteur(s) : Didier BELOT, Gilles DAMBRINE

Date de publication : 10 janv. 2016

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

L’article décrit les principales architectures de circuits hautes fréquences dont la fonction principale est de modifier l’amplitude et la phase des signaux ou encore de distribuer / coupler les signaux. Il s’agit de circuits atténuateurs ou amplificateur, de circuits déphaseurs ou encore de commutateurs.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Didier BELOT : Ingénieur - ST-Microelectronics, Crolles, France

  • Gilles DAMBRINE : Professeur à l’Université de Lille, Institut d’Électronique de Microélectronique et de Nanotechnologies, IEMN, France

INTRODUCTION

Cet article décrit les circuits intégrés monolithiques micro-ondes qui permettent de maîtriser la phase et l’amplitude des signaux micro-ondes.

Les antennes à balayage électronique utilisent des centaines de modules pour lesquels la phase et l’amplitude du signal émis doivent être commandées pour chacun des modules. Pour les transmissions numériques sur porteuse micro-onde (du radiotéléphone aux boucles locales radio), les modulations utilisées, qu’elles soient à décalage en phase (PSK) ou à modulation d’amplitude en quadrature (QAM), impliquent de maîtriser de nombreux déphasages mais aussi l’amplitude du signal dans les modulateurs et démodulateurs. Enfin, le remplacement des filtres dans les têtes d’émission et de réception par des circuits à suppression d’oscillateur local ou à suppression de fréquence image supposent eux aussi l’introduction de déphasages ou de différences de phases. Ces considérations montrent le très grand intérêt qu’il y a à étudier les différentes techniques de déphasage qui peuvent être introduites dans les MMIC (Monolithic Microwave Integrated Circuit). C’est ce qui est fait dans le premier paragraphe.

Par ailleurs, l’amplitude du signal, soit à la réception, soit à l’émission, soit en cours de traitement, doit souvent être contrôlée, ce qui nécessite d’utiliser des cellules à atténuation ou à gain variable.

Mais la fonction d’amplification reste la fonction essentielle de tous ces circuits. Cela se fait dans des amplificateurs en petit signal où les grandeurs importantes sont le gain et le facteur de bruit (paragraphe 2). Les facteurs de bruit proches de 1 permettent de recevoir des signaux très faibles, ce qui augmente les distances des liaisons ou ce qui permet de diminuer les puissances d’émission. Les amplificateurs à large bande peuvent être utilisés pour des applications micro-ondes telles que les contre-mesures mais ces circuits permettent aussi d’amplifier des signaux numériques à quelques dizaines de Gbit/s.

La fonction d’amplification se retrouve aussi dans des amplificateurs de puissance où les grandeurs importantes sont le gain, les non-linéarités, la puissance en sortie et le rendement électrique (paragraphe 3). Par exemple, la consultation des essais comparatifs de téléphones portables montre que les durées de fonctionnement en émission-réception sont très variables. Ces durées sont directement fonction du rendement de l’amplificateur de puissance dans la voie émission. Dans un radar aéroporté, l’augmentation du rendement électrique permet de diminuer la puissance d’alimentation de l’antenne et donc diminuer le poids du générateur de puissance. Mais cette augmentation de rendement permet en même temps de diminuer le poids des circuits de refroidissement qui doivent évacuer la puissance non convertie en micro-ondes. Dans ce cas, l’amélioration du rendement est particulièrement recherchée parce qu’elle a un effet double.

Selon les applications, ces circuits de déphasage et d’amplification sont à bande étroite ou à large bande ce qui débouche aussi sur des circuits différents.

Cette étude des circuits intégrés monolithiques micro-ondes se compose de plusieurs articles :

  • [E1425] MMIC – Évolution et technologie traitant de l’évolution et de la technologie des MMIC,

  • [E1426] MMIC – Composants actifs et [E1427] MMIC – Composants passifs,

  • [e1428] MMIC – Déphaseurs et amplificateurs,

  • [E1429] MMIC – Oscillateurs, mélangeurs, convertisseurs, qui traite de la modulation, démodulation et conversion de fréquence,

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-e1428


Cet article fait partie de l’offre

Électronique

(228 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Électronique

(228 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - SMITH (B.L.) -   The Microwave Engineering Handbook Volume 2 : Microwave circuits, antennas and propagation (Le manuel d’ingénierie des micro-ondes, Volume 2 : Circuits micro-ondes, antennes et propagation) –,  -  Chapman & Hall, 1993.

  • (2) - ROBERTSON (I.D.) -   MMIC design (Conception des MMIC), Chapitre 7 : Lucyszyn (S.) and Joshi (J.S.), Phase shifters (Déphaseurs) –,  -  The Institution of Electrical Engineers, 1995.

  • (3) - SOARES (R.) -   * – GaAs MESFET Circuit Design (Conception des MESFET GaAs), Chapitre 9 : Kermarrec (C.) and Rumelhard (C.), Microwave Monolithic Integrated Circuits (Circuits intégrés monolithiques micro-ondes),  -  Artech House, 1988.

  • (4) - RUMELHARD (C.) -   Monolithic microwave integrated circuits (Circuits intégrés monolithiques micro-ondes) –,  -  Chapitre 10 de SMITH (B.L.) – The Microwave Engineering Handbook Volume 2 : Microwave circuits, antennas and propagation (Le manuel d’ingénierie des micro-ondes, Volume 2 : Circuits micro-ondes, antennes et propagation).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Électronique

(228 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS