La conversion électromécanique de l’énergie occupe une place importante dans le traitement de l’énergie au sens large. En effet, la production d’énergie électrique, réalisée très largement par des groupes tournants comprenant des machines synchrones, consomme le tiers de l’énergie primaire mondiale et les moteurs électriques convertissent une part importante (environ deux tiers dans les applications industrielles) de cette électricité [1]. L’échelle des puissances des convertisseurs électromécaniques, tous fondamentalement réversibles, s’étend sur plus de 10 décades, des tranches de production thermomécanique de plus de 1 GW aux plus petits actionneurs des systèmes micromécaniques de quelques microwatts. Les machines synchrones sont très largement représentées et occupent une place sans cesse croissante. Elles regroupent une très grande variété de structures qui ont cependant en commun un principe immuable : le synchronisme indispensable entre la fréquence des courants d’alimentation et le mouvement relatif de la partie fixe par rapport à la partie mobile. En fonctionnement générateur à fréquence fixe, elles sont exploitées depuis plus d’un siècle. Parmi les nombreuses qualités qui ont fait leur succès, citons : un rendement naturellement supérieur à celui des autres machines, une capacité à régler la puissance réactive et une très grande liberté de conception. Mais depuis quelques décennies, ces machines sont de plus en plus utilisées en fonctionnement moteur à vitesse variable et mettent en œuvre fréquemment des aimants permanents dans une plage de puissance toujours plus étendue (des plus faibles puissances de quelques microwatts à plusieurs mégawatts). Les développements de l’électronique de puissance et de commande ont largement contribué à leur très large diffusion. On les trouve, en effet, aussi bien en traction électrique que dans les dispositifs d’usinage à très grande vitesse en passant par la robotique, l’horlogerie, la domotique, l’industrie automobile ou encore les périphériques informatiques [2].
Pour répondre à ce large spectre d’applications, il existe une très grande variété d’architectures et de dispositions synchrones. Cependant, cette richesse topologique ne se traduit pas par des différences fondamentales en terme de principe physique de fonctionnement. La conversion électromécanique, à partir de sources électromagnétiques, obéit toujours en effet à un principe physique unique. La mise en œuvre de ce principe, selon différentes techniques, et les contraintes liées à l’application envisagée génèrent ensuite naturellement cette diversité architecturale.
En premier lieu, il convient de rappeler le principe général de fonctionnement des convertisseurs électromécaniques et plus particulièrement de type synchrone et de caractériser leur fonctionnement. En considérant plus particulièrement les machines de structure cylindrique à champs tournants, les principaux types de machines synchrones ainsi que leurs modes de fonctionnement sont ensuite présentés.
Le lecteur pourra utilement se reporter aux références bibliographiques des Techniques de l’Ingénieur mentionnées dans « Pour en savoir plus » .