Présentation

Article interactif

1 - PRÉAMBULE ET GRANDS PRINCIPES

2 - EXIGENCES ET CONTRAINTES POUR LES MATÉRIAUX FACE AU PLASMA

3 - DU MATÉRIAU AU COMPOSANT FACE AU PLASMA

4 - QUALIFICATION DES COMPOSANTS FACE AU PLASMA

5 - EXEMPLES DE COMPOSANTS FACE AU PLASMA ACTIVEMENT REFROIDIS

6 - CONCLUSION

7 - GLOSSAIRE

8 - SIGLES, NOTATIONS ET SYMBOLES

Article de référence | Réf : BN3761 v1

Préambule et grands principes
Matériaux et composants face au plasma pour la fusion thermonucléaire

Auteur(s) : Marianne RICHOU, Emmanuelle TSITRONE, Marc MISSIRLIAN, Philippe MAGAUD

Relu et validé le 24 mars 2022

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

La conception des composants face au plasma est un enjeu majeur pour les machines de fusion de prochaine génération. Cet article fait le point sur les avancées significatives dans ce domaine, depuis les premières générations de composants des années 1980 jusqu’aux composants actuellement en cours de construction pour ITER. Après un rappel des conditions extrêmes auxquelles sont soumis les composants, les matériaux retenus sont passés en revue, ainsi que les différents concepts de composants et les moyens de qualification associés.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Materials and Plasma Facing Components for Thermonuclear Fusion Applications

Designing plasma facing components is a key issue for next step fusion devices. This paper presents an overview of the significant progress achieved in this field, from the first generation of components in the 80’s up to the components designed for ITER, an international project targeted at demonstrating the scientific and technical feasibility of fusion as an energy source, presently under construction. After reminding the extreme loading conditions these components have to face in a fusion facility, the selected materials are reviewed, as well as the different concepts developed and the associated components qualification processes.

Auteur(s)

  • Marianne RICHOU : Ingénieur - Institut de recherche sur la fusion magnétique (IRFM) Commissariat à l’énergie atomique et aux énergies alternatives, Saint-Paul-Lez-Durance, France

  • Emmanuelle TSITRONE : Ingénieur - Institut de recherche sur la fusion magnétique (IRFM) Commissariat à l’énergie atomique et aux énergies alternatives, Saint-Paul-Lez-Durance, France

  • Marc MISSIRLIAN : Ingénieur - Institut de recherche sur la fusion magnétique (IRFM) Commissariat à l’énergie atomique et aux énergies alternatives, Saint-Paul-Lez-Durance, France

  • Philippe MAGAUD : Ingénieur - Institut de recherche sur la fusion magnétique (IRFM) Commissariat à l’énergie atomique et aux énergies alternatives, Saint-Paul-Lez-Durance, France

INTRODUCTION

La fusion thermonucléaire est l’une des options envisagées pour produire, dans le futur, de l’énergie décarbonée à grande échelle. La conception des machines de fusion nécessite des développements technologiques de pointe dans de nombreux domaines. Cet article fait le point sur l’ingénierie des composants chargés d’évacuer l’énergie générée dans les dispositifs de fusion. Pour que les réactions de fusion aient lieu, le combustible (isotopes de l’hydrogène) doit être porté à une température de plusieurs dizaines de millions de degrés, à laquelle la matière est à l’état de plasma.Le cœur des dispositifs de fusion est constitué d’une chambre à vide au centre de laquelle le plasma est confiné. Ce confinement est assuré par des champs magnétiques dans les configurations les plus développées à l’heure actuelle, comme les tokamaks ou les stellarators. Les composants constituant la chambre, appelés composants face au plasma, doivent évacuer la puissance générée au cœur du plasma, qu’elle provienne des systèmes de chauffage du plasma ou des réactions de fusion elles-mêmes. Les composants face au plasma doivent donc être activement refroidis par un caloporteur sous pression. Ils sont constitués d’un matériau face au plasma assemblé sur un matériau « puits de chaleur » en contact avec le fluide caloporteur. Cet article se focalisera sur un composant clé, le divertor, qui concentre les charges thermiques les plus élevées dans la chambre à vide. Dans une première partie, les conditions de fonctionnement des composants face au plasma, qui font de leur conception un enjeu majeur pour les machines de fusion de prochaine génération, sont décrites : fonctionnement sous vide (10–6 Pa) et champ magnétique intense (plusieurs teslas), flux de chaleur élevés à évacuer (allant jusqu’à 10-20 MW/m2), températures de surfaces extrêmes (> 1 000 °C localement), cyclage intensif, interactions avec les particules provenant du plasma…Peu de matériaux sont capables de répondre à ces contraintes. Ils sont passés en revue avec leurs atouts et leurs points faibles, notamment en ce qui concerne le tungstène, matériau jugé à l’heure actuelle comme le plus prometteur pour les applications dans les futurs réacteurs de fusion. Les principaux concepts de composants face au plasma sont ensuite présentés ainsi que les règles de conception à respecter. Leur utilisation dans les machines de fusion est mise en perspective, permettant de mesurer les progrès réalisés depuis les premières générations de composants des années 1980 jusqu’aux composants actuellement conçus pour ITER, projet international dont le but est de démontrer la faisabilité scientifique et technologique de la fusion comme source d’énergie, actuellement en cours de construction sur le site de Cadarache, en France. Les moyens de tests spécifiques permettant de qualifier les concepts retenus pour une utilisation en environnement fusion sont également décrits dans l’article. En conclusion, les grands enjeux en matière de développement technologique à plus long terme pour les futurs réacteurs de fusion sont abordés.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

tungsten   |   composite   |   thermonuclear fusion reactor   |   ITER

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-bn3761


Cet article fait partie de l’offre

Génie nucléaire

(164 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

1. Préambule et grands principes

La fusion thermonucléaire, processus à la base de l’énergie produite dans les étoiles, est l’une des options de production d’énergie qui, reproduite sur Terre, pourrait dans le futur offrir à l’humanité une énergie décarbonée à grande échelle . Les grands principes physiques de la fusion thermonucléaire sont rappelés dans [BN 3 013] et si le lecteur veut aborder dans le détail la physique qui y est attachée ainsi que son exploitation dans une machine de fusion, il peut se référer à .

La production d’énergie par fusion thermonucléaire a lieu lorsque deux noyaux fusionnent. Ces réactions nucléaires se réalisent lorsque les conditions nécessaires en température et pression sont réunies pour vaincre la barrière coulombienne qui repousse les deux noyaux chargés positivement. C’est le cas dans les étoiles où la gravité permet de maintenir les conditions nécessaires à ces réactions. Les sections efficaces des réactions de fusion sont très faibles, la plus haute valeur étant de l’ordre du barn à une température de 100 millions de degrés (10 keV) [BN 3 011] pour l’une des réactions de fusion...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

TEST DE VALIDATION ET CERTIFICATION CerT.I. :

Cet article vous permet de préparer une certification CerT.I.

Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.

Obtenez CerT.I., la certification
de Techniques de l’Ingénieur !
Acheter le module

Cet article fait partie de l’offre

Génie nucléaire

(164 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Préambule et grands principes
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - BÉCOULET (A.) -   L’énergie de fusion,  -  Odile Jacob (2019).

  • (2) - FEDERICI (G.), BIEL (W.), GILBERT (M.R.), KEMP (R.), TAYLOR (N.), WENNINGER (R.) -   European DEMO design strategy and consequences for materials  -  Nucl. Fusion, vol. 57, no. 9, p. 92002 (2017).

  • (3) - WIRTZ (M.), LINKE (J.), LOEWENHOFF (T.), PINTSUK (G.), UYTDENHOUWEN (I.) -   Transient heat load challenges for plasma-facing materials during long-term operation,  -  Nucl. Mater. Energy, vol. 12, pp. 148-155 (2017).

  • (4) - BUCALOSSI (J.) et al -   The WEST project: Testing ITER divertor high heat flux component technology in a steady state tokamak environment,  -  Fusion Eng. Des., vol. 89, no. 7-8 (2014).

  • (5) - ROTH (J.) et al -   Recent analysis of key plasma wall interactions issues for ITER,  -  J. Nucl. Mater., vol. 390-391, no. 1, pp. 1-9 (2009).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Génie nucléaire

(164 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Sommaire

QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE

1/ Quiz d'entraînement

Entraînez vous autant que vous le voulez avec les quiz d'entraînement.

2/ Test de validation

Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.

Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Génie nucléaire

(164 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS