Présentation

Article

1 - FORMULATION DU PROBLÈME

2 - PROBLÈME DE TRANSFERT

3 - MÉTHODE DE RÉSOLUTION

4 - EXEMPLE D'APPLICATION

5 - CONCLUSION

6 - SIGLES, NOTATIONS ET SYMBOLES

Article de référence | Réf : TRP4066 v1

Problème de transfert
Trajectoires spatiales - Nettoyage des débris spatiaux

Auteur(s) : Max CERF

Date de publication : 10 avr. 2024

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

La stabilisation du nombre de débris spatiaux nécessite le respect scrupuleux de la réglementation des règles de mitigation et le retrait d’une dizaine de gros débris par an. Les missions de nettoyage consistent à lancer une série de véhicules destinés à capturer et désorbiter des débris sélectionnés. La planification de ces missions conduit à un problème de voyageur de commerce dépendant du temps incluant l’optimisation des transferts orbitaux entre débris successifs. Ce problème est traité par une procédure en trois étapes, utilisant une stratégie de transfert adaptée aux poussées fortes ou faibles et une méthode de recuit simulé pour l’optimisation du chemin. Cette procédure est illustrée sur un exemple de planification de 3 missions.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Space Trajectories. Space Debris Cleaning

Stabilizing the number of space debris requires strict compliance with mitigation regulations and the removal of about ten large debris per year.. Cleaning missions consist of launching a series of vehicles to capture and deorbit selected debris. The planning of these missions leads to a time-dependent travelling salesman problem including the optimization of orbital transfers between successive debris. This problem is treated by a three-step procedure, using a transfer strategy adapted to high or low thrust and a simulated annealing method for the path optimization. This procedure is illustrated on an example for planning 3 successive missions.

Auteur(s)

  • Max CERF : Ingénieur en analyse de mission - ArianeGroup, Les Mureaux, France

INTRODUCTION

L'espace proche de la Terre est peuplé par des milliers de débris de toutes tailles. Les estimations donnent environ un million d’objets de taille 1 à 10 cm et 36 000 objets de taille supérieure à 10 cm. Ces objets circulant à la vitesse orbitale (7 à 8 km/s) représentent un danger constant pour les satellites opérationnels et la station spatiale. Ils requièrent un suivi quotidien et une trajectographie précise afin d’anticiper les risques de collision, et le cas échéant de réaliser des manœuvres d’évitement.

Les débris proviennent des anciens satellites et étages de lanceurs abandonnés en orbite depuis le début de l'ère spatiale. L’érosion de ces véhicules (principalement par chocs avec des particules) génère constamment de nouveaux débris, eux-mêmes sources de nouvelles collisions. Pour enrayer cette croissance exponentielle appelée syndrome de Kessler, il faut éviter d’abandonner de nouveaux véhicules en orbite et également éliminer les plus gros débris actuels. Plusieurs études ont conduit à la conclusion que l’élimination d’au moins cinq gros débris par an (anciens satellites ou étages de lanceurs), en plus d’un respect scrupuleux de la réglementation, est nécessaire pour au mieux stabiliser la population de débris et ne pas compromettre l’utilisation de l’espace dans les décennies à venir.

Une région particulièrement critique est celle des orbites héliosynchrones (SSO) et des orbites polaires terrestres (PEO) dans la plage d'altitude de 700 à 900 km. Ces orbites bien adaptées à l'observation de la Terre concentrent un grand nombre de satellites et par conséquent de débris.

Le programme de nettoyage consiste à lancer une série de véhicules dédiés, chacun étant chargé de capturer et désorbiter cinq débris sélectionnés. Le choix des débris conduit à un problème combinatoire de type voyageur de commerce. Ce problème intrinsèquement complexe comporte ici deux difficultés supplémentaires :

  • les orbites des débris varient sous l’effet de la précession, ce qui rend le problème combinatoire dépendant du temps ;

  • le coût des missions est celui des transferts orbitaux entre les débris sélectionnés, ce qui nécessite de résoudre une suite de problèmes de contrôle optimal.

Cet article traite le problème de planification des missions de nettoyage. L’objectif est que celles-ci puissent être effectuées par des véhicules identiques les moins coûteux possible. Le problème d’optimisation est formulé dans la première partie, puis une stratégie de transfert adaptée aux cas à poussée forte ou faible est définie dans la deuxième partie. La troisième partie décrit une procédure d’optimisation en trois étapes, basée sur la méthode du recuit simulé. La méthode présentée permet d’optimiser les missions en tenant compte de la stratégie de désorbitation (par le véhicule ou des kits autonomes) et des priorités affectées aux débris. Un exemple d’application est détaillé dans la quatrième partie, dans les cas à poussée forte ou faible. Cet exemple volontairement simplifié suppose que tous les débris ont la même priorité et ne traite que du cas d’une désorbitation par des kits autonomes. Il a pour but d’illustrer l’optimalité de l’ordre de ramassage vis-à-vis des coûts de transferts.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

simulated annealing   |   orbital transfer   |   high thrust   |   low thrust   |   traveling salesman problem

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-trp4066


Cet article fait partie de l’offre

Systèmes aéronautiques et spatiaux

(66 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

2. Problème de transfert

Le problème de transfert consiste à trouver la trajectoire à consommation minimale entre deux débris. Ce problème de contrôle optimal est difficile dans le cas général. Pour le simplifier, on définit une stratégie de transfert adaptée aux spécificités des orbites et au système propulsif du véhicule. Le problème de contrôle optimal se réduit ainsi à un problème d’optimisation de petite taille qui peut être résolu efficacement.

2.1 Stratégie de transfert

Les simplifications sont basées sur les spécificités de la mission :

  • les orbites des débris sont quasiment circulaires, car la plupart des débris proviennent d'anciens satellites d'observation en orbites circulaires ;

  • le taux d'élimination visé (5 débris par an) laisse suffisamment de temps pour réaliser les changements de RAAN grâce à la précession naturelle due au J 2.

La stratégie de transfert entre deux débris consiste à amener le véhicule sur une orbite de dérive circulaire et à attendre que le changement de RAAN s’effectue naturellement avant de revenir vers l’orbite du débris suivant. Le choix d'une orbite de dérive circulaire facilite les opérations (suivi et contrôle depuis des stations au sol, gestion de l'énergie pendant les éclipses, détermination des manœuvres).

Le transfert d'un débris 1 vers un débris 2 se décompose en trois phases :

  • un transfert propulsé de l'orbite du débris 1 vers l'orbite de dérive ;

  • une durée d'attente sur l'orbite de dérive ;

  • un transfert propulsé de l'orbite de dérive vers l'orbite du débris 2.

Le transfert commence à une date t 1 et se termine à une date t 2. Les paramètres orbitaux des orbites successives sont indiqués dans la figure 6.

La désorbitation du débris est réalisée soit par le véhicule, soit par un kit attaché au débris. Les durées et consommations associées sont évaluées indépendamment du transfert. Elles sont prises en compte dans l’optimisation globale de la mission selon la procédure décrite au paragraphe ...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Systèmes aéronautiques et spatiaux

(66 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Problème de transfert
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - BETTS (J.T.) -   Practical Methods for Optimal Control and Estimation Using Nonlinear Programming.  -  SIAM (2010).

  • (2) - CERF (M.) -   Techniques d’optimisation 2.  -  EDP Sciences (2023).

  • (3) - CHOBOTOV (V.) -   Orbital Mechanics Third edition.  -  AIAA (2002).

  • (4) - CONWAY (B.A.) -   Spacecraft Trajectory Optimization.  -  Cambridge University Press (2010).

  • (5) - MINOUX (M.) -   Programmation mathématique.  -  Lavoisier (2008).

  • (6) - VALLADO (D.) -   Fundamentals of Astrodynamics and Applications.  -  Microcosm Press, Springer (2007).

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Systèmes aéronautiques et spatiaux

(66 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS