Certaines missions spatiales comportent une phase de rentrée atmosphérique. C’est en particulier le cas pour les vols habités (retour d’astronautes de la station spatiale), pour les sondes d’exploration se posant à la surface d’astres ayant une atmosphère (Mars, Titan) ou pour la récupération d’étages de lanceur réutilisables. Selon le cas la trajectoire peut s’achever en mer ou sur sol, verticalement ou horizontalement.
La rentrée est contrôlée afin de dissiper l’énergie cinétique initiale, de l’ordre de 25 à 30 MJ/kg en orbite, pour se poser au sol à une vitesse quasi nulle. L’utilisation de moyens propulsifs conduirait à des masses d’ergols excessives, incompatibles avec la taille d’un véhicule spatial en orbite. La solution la plus économique consiste à utiliser le freinage aérodynamique et à dissiper l’énergie sous forme de chaleur absorbée par la protection thermique. Les capacités aérodynamiques du véhicule permettent de contrôler la vitesse de descente de manière à réguler les échauffements et les efforts. La trajectoire suivie doit être compatible avec le dimensionnement thermique et mécanique du véhicule et doit arriver au site d’atterrissage avec une vitesse résiduelle faible. Ces contraintes sont étroitement liées aux conditions en début de rentrée qui doivent être visées de manière précise.
Cet article présente les équations dynamiques de la rentrée en repère terrestre tournant. La détermination de la manœuvre et de l’arc orbital précédant la rentrée ainsi que les solutions analytiques simplifiées permettent d’évaluer les performances du véhicule et les charges thermiques et mécaniques subies durant la rentrée.