Le problème à deux corps est le modèle fondamental de la mécanique orbitale. Il décrit le mouvement de deux corps ponctuels en interaction purement gravitationnelle, à l’exclusion de toute autre force. Ces hypothèses simplificatrices permettent d’aboutir à une expression analytique des trajectoires sous forme de coniques, vérifiant des propriétés de conservation de l’énergie et du moment cinétique. La nature de la conique (cercle, ellipse, parabole ou hyperbole) dépend uniquement des conditions initiales de position et de vitesse. L’orbite képlérienne d’un satellite autour de la Terre est représentée géométriquement par ses paramètres orbitaux, qui sont reliés analytiquement à la position et la vitesse en fonction du temps. Un choix adapté des paramètres orbitaux permet une synchronisation du satellite avec les mouvements de la Terre (géosynchronisme) ou du Soleil (héliosynchronisme). Ces propriétés sont particulièrement bénéfiques pour les applications spatiales de télécommunication ou d’observation.
Le problème à deux corps obéit naturellement aux équations de la mécanique mais les solutions analytiques ne sont obtenues que sous certaines hypothèses. En particulier, les deux corps sont supposés sphériques et homogènes et il n'y a pas d'effet relativiste (rappelons que le déplacement du périhélie de Mercure est l'une des premières preuves de la validité de la théorie de la relativité générale).
Bien que simplifié, le modèle képlérien donne une très bonne approximation du mouvement réel d’un satellite artificiel. L’étude plus précise du mouvement nécessite la prise en compte de forces perturbatrices, principalement dues au potentiel gravitationnel terrestre, au frottement atmosphérique, à l’attraction de la Lune et du Soleil ou à la pression de radiation solaire. L’effet de ces forces sur une orbite képlérienne peut être étudié par des méthodes analytiques de perturbations ou par des méthodes numériques de simulations. L’objet de cet article est le mouvement képlérien. Il rappelle les notions et formules utiles à l’ingénieur travaillant sur des applications spatiales.