Le rayonnement micro-ondes est une onde électromagnétique ; sa fréquence est comprise entre 0,3 et 300 GHz. Jusqu’au milieu des années 1940, ce rayonnement était utilisé dans les radars. Ce n’est qu’à cette période – et de manière fortuite ! – que la capacité des micro-ondes à chauffer la matière a été découverte. Une trentaine d’années après, ce processus de conversion de l’énergie électromagnétique en chaleur a intéressé les céramistes pour le frittage des matériaux. Procédé permettant de consolider et de densifier un matériau pulvérulent par un traitement thermique, souvent à hautes températures, grâce à l’activation des mécanismes de transport de matière, le frittage constitue une étape clé de la fabrication des céramiques. Les premières études de frittage des céramiques par chauffage micro-ondes sont attribuées à des groupes américains et français. A partir des années 1970, des groupes américains et canadiens étudient le frittage des céramiques structurales (groupes du Los Alamos National Laboratory-T.T. Meek, du Oak Ridge National laboratory-H.D. Kimrey ou encore de l’Université d’Alberta-W.R. Tinga). Simultanément, des recherches françaises sont initiées à l’Université Pierre et Marie Curie de Paris (groupe de J.C. Badot et A.J. Berteaud), à l’ENSPCI (P. Piluso, N. Lequeux et P. Boch), à l’Université de Nancy (G. Roussy) ou encore à l’Université de Caen Normandie (G. Desgardin et B. Raveau). Au début des années 1980, l’agence spatiale américaine (NASA) s’intéresse à son tour à cette technologie : il s’agissait d’élaborer in situ – en l’occurrence sur la Lune – des matériaux de structure par simple frittage micro-ondes de matériaux lunaires. Il a été très vite démontré que les roches du sol lunaire, riches en oxydes de fer, possédaient d’excellentes aptitudes à être chauffées par micro-ondes.
Sachant que le mécanisme de chauffage résulte de la mise en mouvement d’espèces électriquement chargées dans les solides, il apparaît important de comprendre ces interactions micro-ondes/matière par une évaluation des propriétés diélectriques des solides soumis aux fréquences micro-ondes, et ce, si possible, en fonction de la température. Le mécanisme de chauffage par micro-ondes est lié à un phénomène de polarisation électrique en régime alternatif ; la constante diélectrique complexe du matériau en constitue donc la propriété physique la plus pertinente pour anticiper son aptitude à être chauffé par micro-ondes. Le transfert de l’énergie au sein de la pièce se fait généralement dans son volume, au moins dans le cas des isolants électriques : la profondeur de pénétration de l’onde est alors de l’ordre de quelques centimètres. Ce processus est donc fréquemment qualifié de « chauffage volumique ». Cette propriété s’accompagne aussi de vitesses de chauffage élevées (> 200 °C/min), qui résultent d’une interaction privilégiée entre le matériau et le rayonnement micro-ondes. Seuls la pièce et son environnement proche sont chauffés, ce qui se traduit par un gain conséquent en termes de consommation énergétique. Le chauffage par micro-ondes permettrait également de diminuer les températures de frittage et/ou d’augmenter les vitesses de densification (donc de diffusion) des matériaux. Ces phénomènes font appel aux effets spécifiques du champ électrique micro-ondes sur les mécanismes de diffusion atomiques et sont fréquemment qualifiés d’ « athermiques », car ils ne font intervenir que l’action d’un champ électromagnétique. Par opposition, d’autres effets, liés à la façon dont le matériau est chauffé (chauffage volumique, vitesse de chauffage, etc.), sont aussi des pistes souvent avancées pour expliquer la capacité du chauffage micro-ondes à fritter plus vite et/ou à plus basse température les céramiques (effets thermiques).
Aujourd’hui encore, ces effets sont toujours débattus, même si, à la lumière de nombreux travaux réalisés et publiés, les effets thermiques sont généralement privilégiés pour expliquer l’efficacité rapportée du frittage par chauffage micro-ondes. Ces caractéristiques confèrent alors au procédé micro-ondes des spécificités intéressantes qui s’inscrivent naturellement dans le cadre du développement durable et des économies d’énergie. Dès lors, cette technologie de frittage peut constituer une alternative intéressante aux procédés conventionnels, et suscite aujourd’hui encore un intérêt académique, mais aussi industriel. L’objet de cet article est donc de décrire les mécanismes d’interactions micro-ondes/matière qui conduisent au chauffage des céramiques. Les aspects technologiques de ce procédé sont d’abord présentés : production et transfert des micro-ondes, types d’applicateurs micro-ondes pour la conversion de l’énergie électromagnétique en chaleur au sein de la pièce. Les outils et moyens de contrôle du procédé sont ensuite abordés et donnent lieu, aujourd’hui encore, à de nombreux développements faisant appel à des compétences multiples (thermique, automatisme, métrologie, etc.). Différentes applications sont alors décrites concernant le frittage de l’alumine et de la zircone (deux des céramiques les plus utilisées), avec une section dédiée aux utilisations industrielles des micro-ondes dans le domaine des céramiques (séchage). Des applications spécifiques telles que le brasage, mais aussi la synthèse rapide par réaction à l’état solide entre précurseurs via un chauffage micro-ondes, sont enfin présentées.