Présentation

Article

1 - DIFFÉRENTS TYPES DE MÉTHODES D’ANALYSE

2 - CAS DES SYSTÈMES MAL DÉFINIS

3 - PRINCIPALES TECHNIQUES DE MESURE

4 - QUELQUES PROBLÈMES SPÉCIFIQUES DE CARACTÉRISATION

5 - CONCLUSION

6 - GLOSSAIRE

Article de référence | Réf : P595 v2

Cas des systèmes mal définis
Caractérisation par la détermination des masses molaires

Auteur(s) : Claude STRAZIELLE, Gwenola BURGOT

Date de publication : 10 nov. 2019

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

Cet article donne un aperçu général des différentes méthodes permettant d’accéder à la connaissance de la masse d’une molécule. Sont abordées aussi bien des méthodes anciennes adaptées aux petites molécules telles que les méthodes colligatives (ébulliométrie, cryoscopie, tonométrie, osmométrie) que les méthodes utiles pour des applications dans le domaine de la chimie macromoléculaire. Il s’agit de l’ultracentrifugation, la viscosité, la chromatographie d’exclusion stérique, les méthodes liées à la diffusion de la lumière, ces deux dernières étant le plus souvent associées pour déterminer non seulement la masse molaire moyenne mais aussi la courbe de distribution des masses de la substance.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Characterization by molar mass determination

This article provides a general overview of the various methods for accessing the mass knowledge of a molecule. Old methods adapted to small molecules such as colligative methods (boiling, cryoscopy, tonometry, osmometry) are discussed. Useful methods for applications in the field of macromolecular chemistry such as ultracentrifugation, viscosity, steric exclusion chromatography, light scattering methods are described. The latter two are most often combined to determine not only the average molar mass but also the distribution curve of the masses of the substance.

Auteur(s)

  • Claude STRAZIELLE : Ancien Maître de recherches - Centre de recherches sur les macromolécules de Strasbourg (CNRS), France - Auteur de la version originale de l’article de 1984 et de la version actualisée de l’article de 2003

  • Gwenola BURGOT : Professeur honoraire des Universités Université de Rennes1, France - Autrice de la version actualisée de l’article de 2019

INTRODUCTION

Dans le domaine de l’analyse et de la caractérisation des substances chimiques, l’analyse chimique élémentaire et surtout la détermination de la masse molaire sont essentielles dans l’identification de la molécule. En chimie organique (ou minérale) classique, les composés sont constitués d’atomes en nombre et nature bien définis. Ils présentent, en outre, des propriétés physiques : densité, température de fusion, température d’ébullition, etc., bien précises et sont caractérisés par une masse molaire unique et généralement faible (inférieure à 1 000 ou 2 000). La détermination de leur masse molaire ou masse d’une mole c’est-à-dire 6,022 × 1023 molécules se fait aisément par l’analyse des propriétés thermodynamiques des solutions binaires constituées par la substance à étudier en solution (à faible concentration) dans un solvant donné. Les méthodes dérivées de ces propriétés thermodynamiques (méthodes dites colligatives) comme la cryoscopie, l’ébulliométrie ou la tonométrie sont parfaitement adaptées.

En chimie macromoléculaire (matières plastiques, caoutchouc, polymères hydrosolubles ou biopolymères : protéines, acides nucléiques, virus, etc.), le problème de la détermination de la masse molaire est plus complexe. En effet, ces substances macromoléculaires présentent, dans la plupart des cas, des dimensions et des masses molaires relativement élevées, de sorte que les méthodes colligatives citées précédemment ne sont pratiquement pas utilisables. De plus, les composés macromoléculaires présentent, à de rares exceptions près, une importante hétérogénéité de masse définie par la polymolécularité de la substance. Il existe, contrairement aux espèces chimiques bien définies, une répartition plus ou moins large des masses molaires, d’où la notion de courbe de distribution et de valeurs moyennes de la masse molaire. Afin d’accéder à ces différents paramètres moléculaires, il a fallu développer un certain nombre de méthodes plus adaptées à ce type de substances, comme les méthodes hydrodynamiques (viscosité, chromatographie d’exclusion stérique, etc.) ou les méthodes du rayonnement : interaction entre matière et rayonnement (diffusion multi-angulaire de la lumière,etc). Ces deux groupes de techniques étant généralement associées pour fournir de meilleurs résultats.

Le but de cet article n’est pas de décrire en détail le principe et encore moins la pratique de ces différentes méthodes, mais d’en donner un aperçu général, en particulier de préciser le type de paramètres moléculaires et le domaine de masse accessible, ainsi que leurs avantages, inconvénients et difficultés. Quelques exemples pratiques d’application à certaines substances macromoléculaires spécifiques et largement utilisées dans la chimie macromoléculaire sont donnés.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

colligative methods   |   ultracentrifugation   |   size exclusion chromatography   |   light scattering

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-p595


Cet article fait partie de l’offre

Techniques d'analyse

(290 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

2. Cas des systèmes mal définis

2.1 Systèmes hétérogènes

Les différentes relations du paragraphe 1 liant la grandeur physique expérimentale à la masse molaire supposent que la substance à étudier ne contienne que des molécules identiques à elles-mêmes (composé isomoléculaire). Dans la pratique, la substance peut contenir des impuretés en quantité plus ou moins grande (système hétérogène) ; cela peut être des composés de faible masse molaire : impuretés, additif, trace de catalyseur, sels minéraux, etc., ou des composés mal définis, mais de masse élevée : microcristaux, agrégats, microgels, etc. Ces impuretés ayant une influence plus ou moins grande sur les résultats suivant la méthode utilisée, il convient de les éliminer le plus possible par une purification de la substance.

HAUT DE PAGE

2.1.1 Purification par cristallisation ou par précipitation

La méthode de purification de l’échantillon dépend de la masse molaire de la substance et de ses propriétés physiques. Dans le cas des substances bien définies et cristallisables (généralement des substances de faible masse molaire), il est primordial d’éliminer toute trace d’impuretés qui pourraient avoir une influence importante sur la détermination de M par les méthodes colligatives.

Exemple

Si une substance de masse 2 000 contient 5 % en masse d’une impureté de masse 5 fois plus faible, cette dernière va contribuer, en tonométrie par exemple, pour 20 % à la pression de vapeur et de ce fait la masse de la substance sera sous-estimée de 15 %.

Avec de telles substances cristallisables, la purification peut s’obtenir par cristallisation...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Techniques d'analyse

(290 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Cas des systèmes mal définis
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - PRIGOGINE (I.), DEFAY (R.) -   Thermodynamique chimique.  -  Éd. Desoer, Liège (1950).

  • (2) - BILLINGHAM (N.C.) -   Molar masse measurements in polymer.  -  Science Kogan Page (1977).

  • (3) - QUIVORON (C.) -   Initiation à la physico-chimie macromoléculaire – Volume I : Physico-chimie des polymères.  -  Éd. GFP (Groupe Français des Polymères), chap. 3 (1977).

  • (4) - SCHACHMAN (H.K.) -   Ultracentrifugation in biochemistry.  -  Academic press, Elsevier, Cambridge (1959).

  • (5) - STACEY (K.A.) -   Light scattering in physical chemistry.  -  Butterworth-Heineman, Elsevier, Pays-Bas (1956).

  • (6) - KERKER (M.) -   Scattering of light and other electromagnetic radiations.  -  ...

1 Constructeurs

Appareils de mesure de tension de vapeur ou osmomètre à tension de vapeur

GONOTEC, GSG-Hof, Reuchlinstrasse 10-11, Berlin, Allemagne http://www.gonotec.com

KNAUER, Hegauer Weg 38 14163, Berlin, Allemagne http://www.knauer.net

Appareils d’Ultracentrifugation

ThermoFisher Scientific, Waltham, États-Unis http://www.thermofisher.com

Beckman coulter, Bréa, États-Unis http://www.beckman.fr

Appareils de mesure de lumière diffusée

MALVERN Pananalytical, Grovewood road, MALVERN, Worcestershire, UK http://www.malvernpananalytical.com

Appareils de réfractométrie

KERN, Frommern, Allemagne http://www.kern-sohn.com

Mettler Toledo, 18/20 Avenue de la Pépinière, Viroflay, France http://www.mt.com

Appareils de chromatographie d’exclusion stérique

Agilent Technologies, les Ulis, France http://www.agilent.com

Appareils de chromatographie d’exclusion stérique associés à une détection de lumière diffusée

WYATT Dembach, Allemagne http://www.wyatt.com

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Techniques d'analyse

(290 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS