Les techniques de mesure d’activité par scintillation liquide sont apparues il y a environ soixante-dix ans et se sont imposées dans les domaines des sciences de la vie et de la terre, de la surveillance de l’environnement et de la métrologie primaire de la radioactivité.
Ces techniques consistent à mélanger la solution radioactive à mesurer à un liquide scintillant qui transforme les rayonnements ionisants, consécutifs aux désintégrations radioactives, en lumière, détectable et quantifiable.
Les principaux avantages de la scintillation liquide sont la facilité de préparation des sources radioactives, l’efficacité géométrique de détection de 4π et l’absence de barrière physique entre le radionucléide à mesurer et le détecteur, autorisant la détection de rayonnements de faible énergie. La mesure d’activité par scintillation liquide est une des seules méthodes permettant de mesurer l’activité de radionucléides bêta purs, où la désintégration radioactive n’est pas accompagnée de rayonnement gamma détectable par d’autres techniques. C’est également l’une des seules méthodes de mesure des radionucléides se désintégrant par capture électronique, surtout ceux conduisant à l’émission de rayonnements ionisants de faible énergie.
La scintillation liquide peut également être utilisée comme méthode absolue de mesure d’activité, c’est-à-dire sans faire appel à un étalon.
Les appareils modernes de comptage par scintillation liquide peuvent avoir des limites de détection très faibles autorisant la mesure de micro-activités. Une des applications est la datation au carbone 14 et le traçage géologique.
Les inconvénients principaux de cette technique résident dans son rendement énergétique global qui est faible et variable en fonction de la composition de la source scintillante. Cela impose de calculer le rendement de détection pour chaque condition de mesure.
La maîtrise des techniques de mesure d’activité par scintillation liquide passe d’abord par la compréhension des phénomènes physico-chimiques intervenant dans le processus d’émission de lumière, de détection et d’analyse des impulsions. Elle repose ensuite sur la qualité des sources scintillantes, la détermination de leur rendement lumineux, l’étalonnage des détecteurs et l’appréciation de l’incertitude de mesure. Elle suppose enfin l’utilisation d’appareils de mesure fiables et vérifiables.
L’objectif de cet article est de faire le point sur ces techniques de scintillation liquide afin de permettre aux utilisateurs de maîtriser au mieux le processus de mesure et d’optimiser la qualité des résultats.