Les méthodes de volumes finis sont en quelque sorte complémentaires des méthodes de différences finies [AF 501] et des méthodes d'éléments finis [AF 503] [AF 504] [AF 505]. La structure de données est en effet très proche de celle des différences finies lorsque ces méthodes sont utilisées sur un maillage cartésien, tout en autorisant une plus grande souplesse géométrique sur les maillages non cartésiens comme cela est le cas pour les méthodes d'éléments finis. Les méthodes de volumes finis sont aussi très utilisées pour la discrétisation numérique des équations aux dérivées partielles non linéaires, telles que les équations de la dynamique des gaz compressibles. Ce sont aussi des méthodes très robustes. Ces propriétés expliquent leur intérêt. Cependant le principe de construction qui s'appuie sur des formules intégrales plutôt que différentielles ou faibles est différent des méthodes de différences finies ou d'éléments finis.
L'objet de ce dossier est de présenter le plus simplement possible quelques règles de construction de divers schémas de volumes finis. Les aspects les plus techniques qui concernent les preuves de convergence ne sont pas abordés.