Article de référence | Réf : AF3812 v1

Hypothèse du fluide parfait
Acoustique - Propagation dans un fluide

Auteur(s) : Daniel ROYER, Eugène DIEULESAINT

Relu et validé le 21 oct. 2019

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Auteur(s)

  • Daniel ROYER : Ingénieur de l’École Supérieure de Physique et de Chimie Industrielles de Paris (ESPCI) - Professeur à l’Université Denis-Diderot, Paris 7

  • Eugène DIEULESAINT : Ingénieur de l’École Supérieure d’Électricité (ESE) - Professeur émérite à l’Université Pierre-et-Marie-Curie, Paris 6

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Le milieu de propagation des ondes est, par hypothèse, d’abord considéré comme un fluide parfait. Les phénomènes de viscosité, de conductivité thermique et de relaxation interne sont négligés. Il en résulte que l’entropie se conserve.

Puis, les équations du mouvement et l’équation d’état du fluide sont linéarisées par rapport aux grandeurs caractéristiques de l’onde acoustique (vitesse moyenne, pression acoustique). L’énergie et le flux d’énergie acoustiques sont définis. Les coefficients de réflexion et de transmission d’ondes planes à la frontière de deux fluides sont exprimés. Cette partie propre au fluide (gaz, liquide) se termine par l’examen des effets non linéaires et des phénomènes d’atténuation et de viscosité.

L’article « Acoustique » fait l’objet de plusieurs fascicules :

AF 3 810 Équations générales

AF 3 812 Propagation dans un fluide

AF 3 814 Propagation dans un solide

Les sujets ne sont pas indépendants les uns des autres.

Le lecteur devra assez souvent se reporter aux autres fascicules.

De plus, on trouvera à la fin du fascicule Acoustique- Équations générales un tableau des principales notations utilisées.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-af3812


Cet article fait partie de l’offre

Physique Chimie

(200 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

2. Hypothèse du fluide parfait

2.1 Conservation de l’entropie

La solution de l’équation de l’entropie [4] est très simple lorsque les termes dissipatifs dus à la viscosité et à la conductivité thermique sont négligeables. C’est le cas du fluide parfait pour lequel :

  • la tension mécanique est normale à chaque élément de surface et indépendante de l’orientation de cet élément :

    Tij = – ij ;

  • le flux de chaleur est nul :

    qi = 0 ;

  • l’énergie interne spécifique est une fonction de l’entropie s et de la masse volumique ρ :

    e = e(s, ρ).

Cette dernière hypothèse suppose le fluide en équilibre thermodynamique à chaque instant et en chaque point. Elle est justifiée tant que les variations imposées par l’onde sont lentes par rapport aux temps caractéristiques des mouvements de rotation et de translation des molécules au sein du fluide.

Le second membre de la relation [4] est alors nul et :

s = Cte = s0 ;

en l’absence d’échange thermique entre les différentes régions du fluide et de création de chaleur par dissipation, les grandeurs évoluent adiabatiquement. Si, de plus, les transformations sont réversibles, l’entropie se conserve.

Examinons les conséquences de l’hypothèse du fluide parfait sur les autres lois de conservation.

Les résultats que nous allons établir, pour le fluide parfait, dans les paragraphes suivants, sont regroupés dans le tableau 1.

HAUT DE PAGE

2.2 Équation d’Euler

L’équation...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique Chimie

(200 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Hypothèse du fluide parfait
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - PAPON (P.), LEBLOND (J.) -   Thermodynamique des états de la matière,  -  p. 23, Hermann, Paris (1990).

  • (2) - LANDAU (L.D.), LIFSHITZ (E.M.) -   Mécanique des fluides – Cours de physique théorique,  -  vol. 6, p. 455, Éditions Mir, 2e édition, Moscou (1989).

  • (3) - MAKAROV (S.), OCHMANN (M.) -   Nonlinear and thermoviscous phenomena in acoustics,  -  part I, p. 579-606, Acustica, vol. 82 (1996).

  • (4) - BEISSNER (K.), MAKAROV (S.N.) -   Acoustic energy quantities and radiation force in higher approximation.  -  Journal of the Acoustical Society of America, vol. 97, p. 898-905 (1995).

  • (5) - DIEULESAINT (E.), ROYER (D.) -   Dispositifs à ondes élastiques.  -  Techniques de l’Ingénieur, Traité Électronique, E 3 210 (2000).

  • (6) - KINSLER (L.E.), FREY (A.R.), COPPENS...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique Chimie

(200 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS