Les polymères représentent une classe de matériaux de grand intérêt pour les industries chimiques et celles des matériaux. Ils comptent en effet parmi les fabrications des industries chimiques ayant le plus large volume de production et les matériaux engendrant les plus grands profits. Peu de nouveaux polymères industriels voient toutefois le jour ; les nouveaux polymères restent principalement l’apanage de recherches académiques. Le coût associé à leur mise sur le marché est en effet un facteur limitant. Ce qui est plutôt recherché dans l’industrie est l’obtention de propriétés spécifiques en effectuant des mélanges de polymères, ou la synthèse de copolymères. Il suffit de penser à l’ABS, terpolymère intervenant dans la fabrication des premiers pneus. Ce copolymère associe la rigidité, la dureté et la résistance à la chaleur, grâce à une juste combinaison des trois monomères. Il n’en demeure pas moins qu’une forte composante expérimentale est mise à contribution pour trouver le meilleur compromis, c’est-à-dire la composition des différents polymères ou chaînons du copolymère, offrant la propriété optimale (tout en préservant les autres propriétés). Afin de pallier les problèmes de temps et de coût associés à la recherche du meilleur candidat, la simulation moléculaire se révèle parfaitement appropriée.
Le choix de la méthode de simulation la plus adéquate à la demande d’un industriel dépend principalement du niveau de détails qu’il est nécessaire de connaître. Dans le cas de l’étude de mélanges, à cause d’une entropie de mélange beaucoup plus faible lorsque l’un des constituants est un polymère, comparativement aux mélanges de molécules de faible masse molaire, des démixtions interviennent. Le matériau va donc présenter des domaines riches en l’un ou l’autre des composés. En modulant la tension d’interface entre les deux composants, on modifie la morphologie du matériau, ce qui va permettre d’obtenir les propriétés désirées. La connaissance de la morphologie du système polymérique est donc primordiale pour ajuster au mieux les propriétés d’importance pour des applications pratiques. Le niveau de détails associé à la morphologie correspond à l’échelle dite mésoscopique. L’approche traitée dans cet article va du microscopique vers le macroscopique : en anglais, les termes « bottom-up » sont employés, que l’on peut traduire par « ascendant ». Il ne sera pas question de l’inverse, soit le « descendant », qui en anglais se dit « top-down ».