La Reconnaissance des formes (RdF) regroupe l'ensemble des algorithmes et méthodes permettant la classification des formes dans des classes. Une forme est une observation simplifiée de l'état du système représentée par un ensemble de paramètres. Ces derniers forment l'espace de représentation qui caractérise le fonctionnement ou comportement du système. Chaque classe est associée à un état ou mode caractérisant le comportement ou les conditions de fonctionnement du système. La classification d'une forme est réalisée par un module de classification, appelé classifieur, en utilisant une règle ou fonction de décision. Le problème de la RdF est donc de caractériser le modèle et l'étiquette de chaque classe associée à une forme. Cela requiert le recours à des techniques de classification permettant de regrouper, par apprentissage, les formes similaires.
Les classes peuvent être statiques ou dynamiques. Les classes statiques sont basées sur des données stationnaires. Ce qui signifie que les paramètres et la structure du modèle de chaque classe demeurent inchangés au cours du temps. Toutefois, comme l'environnement est en perpétuelle évolution, la majeure partie des données issues du monde réel est non-stationnaire. La non-stationnarité est définie comme une évolution dans le temps des paramètres et de la structure du modèle ou classifieur due par exemple à l'usure ou au vieillissement de la machine ou encore aux changements temporels des caractéristiques de l'environnement du système. Cette non-stationnarité modifie le comportement statique ou dynamique du système affectant la performance (la justesse de prédiction) de son modèle ou classifieur. Les classes dans ce cas sont dynamiques. Les paramètres et la structure du modèle ou classifieur doivent être mis à jour afin de conserver sa performance au cours du temps.
Dans cet article, le problème d'apprentissage des modèles ou classifieurs dans un environnement non-stationnaire est étudié. Des méthodes et techniques adaptées pour l'apprentissage des classifieurs efficaces pour ce type d'environnement sont présentées et analysées. La prédiction de l'occurrence des défauts, le filtrage d'informations (documents, courriels), la classification des documents et la modélisation du profil des utilisateurs et le suivi de son évolution au cours du temps sont quelques uns des domaines d'application de ce type de méthodes.