Présentation
En anglaisRÉSUMÉ
Les cartes informatiques ont une importance stratégique reconnue pour garantir les performances des systèmes informatiques. Leurs perspectives d’évolution prévisibles sont très liées à celles des circuits intégrés et des processeurs, à savoir une plus grande intégration, l’augmentation de la taille des puces, et l’augmentation de la rapidité des systèmes numériques et donc des puissances dissipées. De nouvelles technologies sont en train de passer du stade de la recherche et du développement à celui des utilisations industrielles et laissent aussi prévoir de nouvelles orientations.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Jean JOLY : Ingénieur ENSEA - Ancien Responsable Développement Packaging Bull SA - Consultant 3JConseil
INTRODUCTION
Les cartes informatiques sont-elles différentes des autres supports d’interconnexion ? Qui différencie ces cartes des autres circuits imprimés couramment utilisés dans d’autres produits ou systèmes électroniques ?
D’après le découpage de iNEMI , ces cartes sont utilisées dans les familles des produits « bureautique et gros systèmes d’entreprises », par exemple, les systèmes de stockage de masse, les serveurs et ordinateurs de bureau, les postes de travail et les ordinateurs personnels, ou bien dans les « produits portables », par exemple les ordinateurs portables, les PDA, les notebooks, etc.
Les cartes de ces produits sont constituées par l’assemblage d’un grand nombre de composants standards et de mémoires autour d’un ou plusieurs processeurs qui assurent le traitement des données.
Les cartes informatiques sont caractérisées par :
-
des performances électriques élevées (rapidité) liées à celle des processeurs ;
-
une très grande complexité liée à l’important nombre d’interconnexions des composants ;
-
des caractéristiques physiques exigeantes liées aux contraintes électriques, thermiques et mécaniques des processeurs.
En général, les cartes informatiques nécessitent donc :
-
des grandes dimensions ;
-
un nombre de couches important pour assurer le routage des signaux ;
-
des matériaux performants pour assurer la rapidité des signaux sans en altérer la forme ;
-
des propriétés thermomécaniques qui permettent de garantir le refroidissement des processeurs et d’assurer la fiabilité de fonctionnement des systèmes.
Dans le dossier précédent Conception des cartes pour ordinateurs. Partie 1 et dans ce présent dossier, nous analysons successivement tous les points liés à la conception des cartes en partant de l’évolution des processeurs et des challenges technologiques à prévoir dans les prochaines années. Concernant les symboles, le lecteur se reportera en Conception des cartes pour ordinateurs. Partie 1.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Électronique
(231 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
5. Conclusion et perspectives
Les cartes électroniques ont une importance stratégique reconnue pour garantir les performances des systèmes informatiques. Leurs perspectives d’évolution prévisibles sont très liées à celles des circuits intégrés et des processeurs, à savoir :
-
une plus grande intégration ;
-
l’augmentation de la taille des puces ;
-
l’augmentation de la rapidité des systèmes numériques et donc des puissances dissipées.
De nouvelles technologies sont en train de passer du stade de la recherche et du développement à celui des utilisations industrielles et laissent prévoir de nouvelles orientations (figure 31) :
-
utilisation de nouveaux matériaux organiques aux performances améliorées : plus faible constante diélectrique, faibles pertes, meilleure tenue en température ;
-
généralisation des composants à connexions surfaciques en rapport avec l’augmentation de la taille des puces et la possibilité de mieux assurer leur routage sur les cartes supports d’interconnexion par la technologie des microvias (flip chip, BGA, micro-BGA...) ;
-
intégration des composants passifs dans les cartes ;
-
procédés d’assemblage sur carte compatible entre les flip chip et les composants CMS ;
-
nouveaux procédés de fabrication en volume du type circuits intégrés (wafer level packaging ) ;
-
mise en place de technologies 3D associées aux cartes et composants électroniques spécialement pour les mémoires ;
-
utilisation des SiP (system in a package ) et des SOC (system on a chip ), ce qui pourrait diminuer la dimension de certaines cartes des équipements portables ;
-
intégration de composants optiques et de liaisons optiques pour réaliser des fonctions complexes rapides (par exemple, intégration des guides d’ondes optiques).
De nombreux challenges techniques restent à résoudre, en particulier :
-
le développement de logiciels de conception intégrés comprenant le tracé et toutes les fonctions de simulation nécessaires en vue d’augmenter la rapidité de réalisation des cartes ;
-
le développement...
Cet article fait partie de l’offre
Électronique
(231 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Conclusion et perspectives
BIBLIOGRAPHIE
-
(1) - * - International Electronics Manufacturing Initiative : INemi Road Map Edition (2004).
-
(2) - * - International Technology Roadmap for Semi Conductors ITRS Edition (2005).
-
(3) - * - International Printed Circuit IPC National Technology Roadmap Overview (2002/2003).
-
(4) - * - Intel : Technology Journal et Technology @ Intel Magazine.
-
(5) - Material and Processes for Microwave. - ISHM (1991).
-
(6) - CHEN (R.Y.) - Signal Integrity. - Sigrity, Inc. IEEE EMC Symposium.
-
(7) - Thermal Management in Microelectronics. - ISHM (1984).
- ...
Cet article fait partie de l’offre
Électronique
(231 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive