Présentation

Article

1 - RÔLE DES CIRCUITS DE COMMANDE DE CSCP

2 - LE CSCP DANS SON ENVIRONNEMENT

3 - LE CSCP DANS UNE CELLULE DE COMMUTATION

4 - VERS LES CELLULES DE COMMUTATION RÉELLES ET LEURS PARTICULARITÉS

5 - CONCLUSION

Article de référence | Réf : D3230 v2

Le CSCP dans une cellule de commutation
Commande des composants à semi-conducteurs de puissance : contexte

Auteur(s) : Stéphane LEFEBVRE, Bernard MULTON, Nicolas ROUGER

Date de publication : 10 août 2017

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

Cet article décrit l’environnement électrique et thermique des composants à semi-conducteurs de puissance (CSCP) afin d’introduire les principales contraintes et fonctionnalités requises des circuits de commande rapprochée. Les cellules de commutation, principalement issues de la brique de base des convertisseurs statiques modernes, que constitue le bras de pont, sont décrites. Les nouvelles spécificités et contraintes introduites par les composants grand gap (SiC et GaN) sont présentées ainsi que les évolutions technologiques en matière d’intégration fonctionnelle et de packaging. Des exemples en environnement réel mettent en évidence les interactions entre les CSCP et leurs circuits de commande rapprochée. L’ensemble des fonctionnalités attendues de la part de ces circuits sont résumées.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Driving Power Semiconductor Devices : Context

This article presents the thermal and electrical environment of power semiconductor devices, along with the main constraints and requirements for their associated drivers. Since most modern power converters are built from power commutation cells, this simple converter topology is described. There follows an overview of the new specific features and novel constraints of wide-bandgap power devices (SiC, GaN), as power devices based on these materials are now competing with silicon. Technical trends are highlighted, from smart power to integrated power modules, with a focus on packaging solutions. Several examples are discussed, emphasizing the interactions between power devices and their associated drivers. Lastly the driver requirements are summarized.

Auteur(s)

  • Stéphane LEFEBVRE : Professeur - SATIE, CNRS, Conservatoire national des arts et métiers, Paris, France

  • Bernard MULTON : Professeur - SATIE, CNRS, École Normale Supérieure de Rennes, Rennes, France

  • Nicolas ROUGER : Chargé de recherche - Laplace, CNRS, Toulouse, France

INTRODUCTION

Les CSCP (composants à semi-conducteurs de puissance) permettent de réaliser des fonctions interrupteur toujours plus fiables et plus performantes.

Pour gérer et moduler les échanges d’énergie électrique via les convertisseurs électroniques de puissance, chaque CSCP ou chaque groupe de CSCP nécessite un circuit dédié de commande rapprochée (aussi appelé gate driver) afin de piloter son état (bloqué ou passant) et d’optimiser les transitions pendant les changements d’état (commutations au blocage et à l’ouverture).

Les circuits de commande rapprochée comprennent ainsi, a minima, un étage de contrôle statique et dynamique de l’interface de pilotage du ou des CSCP. D’autres fonctions complémentaires peuvent être intégrées ou associées permettant d’observer, de protéger et plus généralement de garantir le fonctionnement fiable et optimal du ou des CSCP. Une spécificité des CSCP réside dans leur mode de fonctionnement en régime de commutation, avec des contraintes fortes sur l’environnement du CSCP et du circuit de commande rapprochée : celui-ci doit, en particulier, s’adapter à des potentiels élevés et des variations rapides de tensions et courants. L’assemblage des CSCP à leur environnement rapproché est lui aussi critique, depuis leurs commandes rapprochées, les CSCP formant une ou plusieurs cellules de commutation, jusqu’à leur circuit de refroidissement. Cet environnement des CSCP est aussi important que ses performances intrinsèques, permettant alors de proposer un fonctionnement adapté et optimisé aux compromis classiques en électronique de puissance (thermique, compatibilité electromagnétique, rendement, densité de puissance, fiabilité).

D’autre part, de nouveaux matériaux dits grand gap (tels que SiC et GaN) et d’autres ruptures sur les architectures des transistors de puissance en silicium repoussent les contraintes et compromis classiques. Ceci est particulièrement d’actualité avec la montée en tension, la montée en fréquence et l’augmentation des vitesses de commutation, ainsi que les ruptures sur les structures de convertisseurs (architectures entrelacées, associations série/parallèle). Les composants à semi-conducteurs de puissance et leurs périphériques doivent toujours évoluer afin de permettre d’aller toujours plus loin dans l’amélioration de l’efficacité énergétique, de la sûreté de fonctionnement, de la fiabilité et de la compacité des convertisseurs statiques.

Selon la technologie de composants à semi-conducteur de puissance considérée et son environnement, mais également selon la nature des commutations, la réalisation des fonctions de commande et les possibilités de contrôle peuvent varier. C’est la raison pour laquelle nous avons séparé les composants à semi-conducteurs de puissance en trois familles technologiques [D3231] :

  • les thyristors et les triacs ;

  • les transistors bipolaires et les thyristors GTO ;

  • les transistors à grille (MOSFET, IGBT, HEMT GaN et JFET SiC) ;

Pour chacune de ces catégories de CSCP, les circuits de commande seront détaillés dans les articles suivants [D3232] et [D3233].

Les composants à semi-conducteurs de puissance (CSCP) commandés ont connu une évolution très rapide depuis l’avènement des premiers thyristors à la fin des années 1950 jusqu’à l’apparition des IGBT (Insulated Gate Bipolar Transistor) au cours des années 1980 puis de l’émergence des matériaux grand gap (SiC et GaN) dans les années 2010. Les dernières décennies ont été marquées, en outre, par une progression continue des performances (pertes, rapidité, prix…) des composants de puissance, grâce aux designs des puces, des boîtiers et de leur connectique, mieux optimisés, mais grâce également à de nouveaux matériaux semi-conducteurs. Enfin une plus forte intégration des fonctions et l’accroissement des performances et des fonctionnalités des circuits de commande rapprochée ont contribué significativement aux progrès constatés. La facilité apparente de la commande des composants à grille isolée, qui a fortement contribué à leur succès, cache en réalité de nombreuses difficultés, surtout en haute fréquence et/ou en forte puissance. En réponse à la demande, de nombreux fabricants se sont mis à proposer toutes sortes de circuits (intégrés ou hybrides ou encore imprimés) destinés à la commande des composants à semi-conducteurs de puissance. C’est ainsi que le concepteur de convertisseur est devenu de plus en plus fréquemment un assembleur de fonctions ; il est néanmoins tenu de comprendre, ne serait-ce que pour conserver un esprit critique par rapport aux propositions des fournisseurs, comment fonctionnent ces commandes, quels sont les compromis rencontrés et quelles en sont les limites.

Les convertisseurs statiques d’énergie nécessitent, pour avoir des rendements compatibles avec nos exigences énergétiques et économiques, de fonctionner en commutation. À la suite des systèmes à commutation mécanique et des tubes à gaz, les CSCP ont permis de réaliser des fonctions « interrupteur » toujours plus fiables, plus compactes et énergétiquement plus efficaces. Ces progrès ont conduit à l’essor rapide de l’électronique de puissance que l’on connaît, des faibles puissances (microwatts) jusqu’aux très grandes (gigawatts), et qui joue un rôle majeur dans la transition énergétique en marche.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

power electronics   |   integration   |   driver   |   power semiconductor devices

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-d3230


Cet article fait partie de l’offre

Électronique

(242 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

3. Le CSCP dans une cellule de commutation

3.1 Commutation commandée idéale

La conversion d’énergie, contrôlée par le découpage des courants et tensions, met en œuvre des composants commutant dans la plupart des cas sur des récepteurs se comportant, dynamiquement, comme des sources de courant. La quasi-totalité des dispositifs existants se comporte ainsi, pendant les phases de commutation, comme la cellule de commutation « interrupteur commandé-diode » de base présentée à la figure 17 et idéalisée (source de tension parfaite en entrée et absence d’inductances parasites). Cette cellule, si elle n’est pas la seule, est largement représentative de la plupart des structures de convertisseurs, à savoir la commutation d’un transistor (quelle que soit sa technologie) avec une diode rapide de type PiN dans laquelle le phénomène de recouvrement inverse joue un rôle important (diode PiN se basant sur une conduction « biporteurs », par opposition aux diodes Schottky uniquement basées sur un courant d’un seul type de porteur et ne présentant alors qu’un effet capacitif ou de blocage). Nous verrons cependant, au paragraphe 2.5 (figure 22), deux autres contextes.

Dans cette cellule, les comportements du transistor et de la diode imposent, pour une grande part, les formes d’ondes des courants et tensions des composants lors des phases de commutation. En effet, en négligeant les effets inductifs parasites, les lois des nœuds et des mailles appliquées à ce circuit donnent :

Les commutations de la diode de roue libre sont spontanées, imposées par les seules évolutions des courants et tensions à ses bornes. Celle-ci est nécessairement bloquée lorsque la tension à ses bornes est négative et présente une faible chute de tension directe lorsqu’un courant la traverse. Par ailleurs, pour qu’une diode se bloque, il faut attendre que le courant qui la traverse atteigne la valeur négative de recouvrement, notée I RM (nous ne considérons pas ici le cas des diodes Schottky ne présentant pas de charges recouvrées mais seulement un comportement capacitif). Ces quelques remarques justifient les formes d’ondes associées à la cellule de commutation « interrupteur...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Électronique

(242 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Le CSCP dans une cellule de commutation
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - VIDEAU (N.), MEYNARD (T.), BLEY (V.), FLUMIAN (D.), SARRAUTE (E.), FONTES (G.), BRANDELERO (J.) -   5-phase interleaved buck converter with gallium nitride transistors.  -  Wide Bandgap Power Devices and Applications (WiPDA), IEEE Workshop on, Columbus, OH, 2013, pp. 190-193 (2013).

  • (2) - ZHAO (T.), WANG (G.), BHATTACHARYA (S.), HUANG (A.Q.) -   Voltage and Power Balance Control for a Cascaded H-Bridge Converter-Based Solid-State Transformer.  -  IEEE Transactions on Power Electronics, vol. 28, no 4, pp. 1523-1532 (2013).

  • (3) - DARRGHI (V.), SADIGH (A.K.), ABARZADEH (M.), ESKANDARI (S.), CORZINE (K.A.) -   A New Family of Modular Multilevel Converter Based on Modified Flying-Capacitor Multicell Converters.  -  IEEE Transactions on Power Electronics, vol. 30, no. 1, pp. 138-147 (2015).

  • (4) - PEREZ (M.A.), BERNET (S.), RODRIGUEZ (J.), KOURO (S.), LIZANA (R.) -   Circuit Topologies, Modeling, Control Schemes, and Applications of Modular Multilevel Converters.  -  IEEE Transactions on Power Electronics, vol. 30, no 1, pp. 4-17 (2015).

  • (5) - CREE -   Datasheet...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Électronique

(242 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS