La tendance historique en micro/nanoélectronique ces quarante dernières années a été d'augmenter la vitesse et la densité d’intégration, en réduisant la dimension des dispositifs électroniques, en diminuant la dissipation d'énergie par transition binaire pour les applications logiques « More Moore » et en développant de nombreuses fonctionnalités nouvelles pour les futurs systèmes électroniques. Nous sommes confrontés à des défis colossaux pour continuer cette progression exponentielle des performances : augmentation substantielle de la consommation d'énergie et de l’échauffement des circuits qui peut compromettre l'intégration et la performance futures des circuits intégrés ; réduction des performances des interconnexions traditionnelles métal/diélectrique à faible permittivité ; lithographie ; intégration hétérogène de nouvelles fonctionnalités pour les futurs nanosystèmes, etc.
Par conséquent, de nombreuses technologies de rupture, de nouveaux matériaux et dispositifs innovants sont aujourd’hui nécessaires. En ce qui concerne l’augmentation des performances et la réduction substantielle de la puissance statique et dynamique des circuits logiques haute performance et ultra basse consommation, ainsi que des nanosystèmes autonomes, qui est l’objet de cet article, des matériaux alternatifs et/ou de nouvelles architectures de dispositifs sont obligatoires pour les technologies CMOS et « beyond-CMOS ».
Cet article se concentre sur les principales tendances, défis, limites et solutions possibles pour les dispositifs très fortement intégrés basés sur la technologie FD silicium sur isolant, ainsi que ses extensions pour repousser les limites d’intégration des circuits et optimiser leur performance. Nous traiterons des technologies les plus matures ou prometteuses suivantes : dispositifs MOS FDSOI incluant de possibles accélérateurs de performances (canaux Ge et III-V alternatifs au Si, effets des contraintes mécaniques, maîtrise des phénomènes de canaux courts et de la variabilité des propriétés électriques), évolution des dispositifs FDSOI vers des architectures innovantes (double-grille, triple-grille/FinFET, grille enrobante/gate-all-around, intégration 3D), composants émergents en FDSOI (FET tunnel à commutation abrupte), quasi-SOI (MOSFET et TFET en couche 2D sur isolant) et hybrides (MOSFET et TFET à grille ferroélectrique, MOSFET et TFET intégrant des matériaux innovants à changement de phase ou à base de nano-filament).