Présentation
RÉSUMÉ
L’électrolyse de l’eau à membrane polymère acide - PEM - est une technologie prometteuse permettant la production d’hydrogène et d’oxygène de grande pureté, répondant aux enjeux énergétiques et environnementaux actuels. Cet article expose les fondements théoriques sous-jacents, décrit le fonctionnement des cellules élémentaires et le rôle des composants clés tels que les électrocatalyseurs et les membranes polymères, et dresse la liste des équipements auxiliaires nécessaires au bon fonctionnement des machines. Les principales applications industrielles sont présentées. Les niveaux de performance atteignables et les limitations et perspectives d’amélioration sont également analysés et discutés.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Pierre MILLET : Docteur-ingénieur de l’Institut national polytechnique de Grenoble - Professeur à l’université Paris-Saclay - Directeur scientifique chez Elogen - Institut de Chimie Moléculaire et des Matériaux d’Orsay-UMR 8182 – Université Paris-Saclay, Orsay, France
INTRODUCTION
L’électrolyse de l’eau permet d’obtenir de l’hydrogène et de l’oxygène de grande pureté, traditionnellement utilisés dans différents secteurs industriels tels que l’industrie alimentaire, l’industrie des semiconducteurs, ou les applications spatiales et sous-marines. Au cours des dernières décennies, l’évolution du contexte énergétique et la nécessité de réduire les émissions de gaz à effet de serre a provoqué un regain d’intérêt pour la production d’hydrogène électrolytique (vecteur énergétique) à partir de sources d’énergies renouvelables. En dépit d’un coût d’investissement encore élevé, du fait de l’utilisation d’électrocatalyseurs à base de métaux précieux et d’ionomères fluorés, la technologie à membrane polymère acide (plus connue sous l’acronyme anglo-saxon PEM qui signifie « Proton-Exchange Membrane » ou « Polymer Electrolyte Membrane ») présente une complémentarité voire des avantages importants par rapport à la technologie alcaline de référence. En particulier, l’absence d’électrolyte liquide corrosif permet de concevoir des électrolyseurs fiables, fonctionnant en régime transitoire sous haute pression voire sous différentiel de pression, sous forte densité de courant et avec des rendements énergétiques élevés. L’objectif de cet article est de fournir une analyse détaillée du fonctionnement et des performances des électrolyseurs PEM, tout en explorant les défis technologiques et économiques associés à cette technologie. Ce travail s’inscrit dans un contexte technico-économique où l’électrolyse de l’eau est vue comme un levier essentiel pour la production d'hydrogène vert, en lien avec les politiques énergétiques actuelles visant à réduire les émissions de gaz à effet de serre. À travers une exploration des fondements théoriques, des composants clés, des fonctionnalités auxiliaires et des performances, cet article vise à fournir aux acteurs industriels et scientifiques une compréhension claire des opportunités et des obstacles associés à cette technologie de production d'hydrogène propre.
MOTS-CLÉS
Efficacité énergétique Électrolyse de l'eau Membrane échangeuse de protons Réacteur électrochimique
VERSIONS
- Version archivée 1 de sept. 2007 par Pierre MILLET
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Procédés chimie - bio - agro > Opérations unitaires. Génie de la réaction chimique > Réacteurs chimiques > Électrolyse de l'eau à membrane polymère acide > Conclusions
Cet article fait partie de l’offre
Hydrogène
(54 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Des modules pratiques
Opérationnels et didactiques, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
8. Conclusions
En conclusion, l’électrolyse de l’eau PEM est une technique qui permet de dissocier l’eau en hydrogène et oxygène moléculaires sur l’intervalle de température allant de l’ambiante à environ 150 °C. Elle se caractérise par l’utilisation d’un électrolyte acide confiné au sein d’une membrane polymère de type ionomère. Bien que de faible épaisseur (typiquement entre 50 et 200 µm), la membrane (lorsqu’elle est correctement supportée) peut fonctionner à des pressions de services élevées de plusieurs dizaines de bar et même de fonctionner sous différentiel de pression (typiquement 20 bar). Les machines actuellement disponibles couvrent un domaine de puissance électrique allant jusqu’à quelques dizaines voire quelques centaines de MW. Ce type de technologie est capable de fonctionner de manière satisfaisante et durable lorsque la puissance électrique incidente est fortement transitoire (sources électriques d’origine renouvelable ou service au réseau électrique).
-
L’électrolyse de l’eau PEM permet de produire de l’hydrogène et de l’oxygène sous pression sur une large plage de températures, allant de la température ambiante jusqu’à 150 °C.
-
Les électrolyseurs PEM peuvent atteindre des puissances de plusieurs centaines de MW et fonctionner sous un fort différentiel de pression.
-
Ils sont particulièrement adaptés aux sources électriques intermittentes, comme les énergies renouvelables, et constituent une solution durable et efficace pour l’intégration au réseau électrique.
Cet article fait partie de l’offre
Hydrogène
(54 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Des modules pratiques
Opérationnels et didactiques, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Conclusions
BIBLIOGRAPHIE
-
(1) - TRASATTI (S.) - 1799-1999 : Alessandro Volta’s ‘Electric Pile’. - In : Journal of Electroanalytical Chemistry, vol. 460, p. 1-4 – 10.1016/S0022-0728(98)00302-7 (1999).
-
(2) - DE LEVIE (R.) - The electrolysis of water. - In : Journal of Electroanalytical Chemistry, vol. 476, p. 92-93 – 10.1016/S0022-0728(99)00365-4 (1999).
-
(3) - LEROY (R.L.), BOWEN (C.T.), LEROY (D.J.) - The Thermodynamics of Aqueous Water Electrolysis. - In : Journal of The Electrochemical Society, vol. 127, p. 1954-1962 – 10.1149/1.2130044 (1980).
-
(4) - The European Hydrogen Backbone (EHB) initiative. - https://ehb.eu/ [s.d.].
-
(5) - HANKE-RAUSCHENBACH (R.), BENSMANN (B.), MILLET (P.) - Hydrogen production using high-pressure electrolyzers. - In : Compendium of Hydrogen Energy, Elsevier, p. 179-224 – https://doi.org/10.1016/B978-1-78242-361-4.00007-8 (2015)
-
...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
1.1 Constructeurs – Fournisseurs – Distributeurs (liste non exhaustive)
Chemours :
DuPont Fuel Cells :
https://www.dupont.com/industries/energy.html
Elogen :
NEL hydrogen Hydro :
https://nelhydrogen.com/water-electrolysers-hydrogen-generators/
Plug Power :
Siemens Energy :
HAUT DE PAGE1.2 Organismes – Fédérations – Associations (liste non exhaustive)
European Hydrogen and Fuel Cell Technology Platform :
Hydrogen Europe :
Cet article fait partie de l’offre
Hydrogène
(54 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Des modules pratiques
Opérationnels et didactiques, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive