Res matériaux cellulaires peuvent être définis comme étant des matériaux contenant des vides gazeux appelés cellules (ce terme dérive du latin cella qui signifie chambre), entourés par une matrice solide dense. Les matériaux cellulaires sont largement employés dans un grand nombre d'applications telles que l'isolation thermique et phonique, les absorbants de liquides et les structures à faible densité.
Selon leur composition, la morphologie des cellules et leurs propriétés physiques, les polymères cellulaires peuvent être considérés comme rigides ou flexibles. Selon la taille des cellules, les polymères cellulaires peuvent être classifiés comme macrocellulaires (>100 µm), microcellulaires (1 à 100 µm), ultramicrocellulaires (0,1 à 1 µm) ou nanocellulaires (0,1 à 100 nm).
Les matériaux cellulaires peuvent être distingués selon que leurs cellules sont ouvertes ou fermées. Dans les matériaux à cellules fermées, les vides sont isolés les uns des autres et les cavités sont entourées par une paroi continue de polymère. Dans les matériaux à cellules ouvertes, les parois sont percées par des ouvertures dont la taille peut être plus ou moins importante.
Les structures cellulaires sont très courantes dans la nature : le liège, le bois, les éponges et les coraux sont des exemples de telles structures. L'humanité a utilisé ces matériaux cellulaires naturels pendant des siècles et a récemment développé ses propres matériaux cellulaires de synthèse : les polymères sont les plus communs mais des techniques ont été développées afin de mettre en forme les métaux et les céramiques sous forme cellulaire. Les polymères cellulaires sont généralement préparés par moussage chimique ou physique. Dans ce cas, le contrôle de la taille des cellules et de leur morphologie est difficile à atteindre. De même qu'il est difficile d'obtenir des structures totalement interconnectées.
L'approche consistant à utiliser des émulsions hautement concentrées pour la préparation de polymères microcellulaires à porosité contrôlée totalement interconnectée peut donc représenter une alternative attractive pour de nombreuses applications. Les matériaux ainsi obtenus, connus sous l'acronyme de polyHIPE, font l'objet d'un vif intérêt de la part des chercheurs académiques et industriels du fait de leur facilité de préparation et de leur potentiel élevé d'applications.
AIBN
azobisisobutyronitrile
BET
théorie de Brunauer, Emmett et Teller
BPO
peroxyde de benzoyle
DVB
divinylbenzène
E/H
eau-dans-huile
H/E
huile-dans-eau
HIPE
High Internal Phase Emulsion
HLB
balance hydrophile-lipophile
KPS
persulfate de potassium
MEB
microscope électronique à balayage
MET
microscope électronique à transmission
MMT
montmorillonite
MWCN
nanotubes de carbone multifeuillets
polyHIPE
polymerized High Internal Phase Emulsion
PS
polystyrène
SWCN
nanotubes de carbone monofeuillets
VDA
(p-vinyl)benzyldiméthyldodécylammonium