Les performances d’un moteur à explosion, qu’il soit Diesel ou à allumage commandé, à deux ou à quatre temps, à aspiration naturelle ou suralimenté, sont conditionnées directement par la masse d’air introduite dans le cylindre. Cette masse d’air détermine la quantité maximale de combustible que l’on peut introduire et donc l’énergie totale disponible. Cette énergie est transformée, au cours du cycle moteur, en énergie mécanique sur un arbre, mais également aussi en imbrûlés, en pertes à l’échappement et en pertes thermiques.
L’optimisation de cette quantité d’air introduite dans le cylindre nécessite l’étude des écoulements instationnaires qui ont lieu dans les systèmes d’admission et d’échappement des moteurs thermiques. Cette optimisation s’effectue en déterminant les longueurs et les sections des conduits (suralimentation par effet Kadenacy), les volumes des différents éléments (résonances de tubulures sur des volumes : filtre à air ou cylindre), ainsi que les caractéristiques de la distribution (diamètre et nombre de soupapes, calage des lois de levées, étalement, levée maximale, accélération maximale admissible, caractéristiques des lumières pour les moteurs deux temps).
Ces considérations s’appliquent aussi bien aux moteurs alternatifs qu’aux moteurs rotatifs, qui ne diffèrent que par les conceptions cinématiques de variation de volume.
Nous allons décrire tout d’abord 1 les phénomènes physiques que l’on rencontre lors de l’étude des transferts de gaz dans un moteur avec quelques exemples de sensibilité à différents paramètres, tels que la distribution, les échanges de chaleur, les pertes de charge, l’acoustique ou les variations de section. Puis nous présenterons une approche par modélisation numérique permettant d’étudier ces phénomènes. Les équations qui peuvent s’appliquer pour étudier les écoulements dans les tubulures seront décrites 2, ainsi que les principales méthodes de résolution 3 qui sont utilisées actuellement (pour plus de détails, on pourra se reporter à l’article Écoulements instationnaires [A 1 920] dans le traité Sciences fondamentales). Nous aborderons également 4 la modélisation des cylindres, des volumes, des pertes de charge singulières (papillon, coudes, etc.) et des turbocompresseurs. Nous mettrons ensuite en évidence un certain nombre de problèmes qui se posent, en particulier concernant la modélisation des transferts thermiques 5 et nous examinerons alors les principaux modèles rencontrés. Les mêmes difficultés se posent pour l’étude des pertes de charge 6, surtout en régime instationnaire, qui feront également l’objet d’un certain nombre de considérations. Ce chapitre se terminera par les méthodes de mesure 7 et les tendances actuelles 8 visant à optimiser le remplissage d’un moteur.