Présentation

Article

1 - JONCTIONS ÉMETTRICES À SEMI-CONDUCTEUR

2 - MESURES ÉLECTRIQUES

3 - MESURES OPTIQUES

4 - CONCLUSION

Article de référence | Réf : R1178 v2

Jonctions émettrices à semi-conducteur
Mesures sur les composants opto-électroniques d'émission

Auteur(s) : Irène JOINDOT, Naveena GENAY, Philippe CHANCLOU

Relu et validé le 10 févr. 2023

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

Les composants d'émission se rencontrent dans bon nombre d'édifices optoélectroniques, à commencer par les systèmes de télécommunications par fibre optique ou les senseurs optiques et les systèmes de lecture de disques optiques. Les performances de ces systèmes reposent toutes sur celles des composants émetteurs, d'où l'importance de mesures précises de leurs caractéristiques. Après un bref rappel sur le mode de fonctionnement de ces composants, les méthodes de mesure de leurs principaux paramètres sont détaillées.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Measuring emission components

Transmitter/receiver components are common in many optoelectronic buildings, beginning with telecommunication systems using fibre optics or optical sensors and optical disk reading systems. The performances of these systems rely entirely on that of the generating components, which is why it is important to measure their characteristics with precision. After a brief summary of how these components operate, the measurement methods of their main parameters are itemized.

Auteur(s)

  • Irène JOINDOT : Ingénieur de l'École nationale supérieure d'électronique et d'électrotechnique de Caen (EnsiCaen) - Docteur de l'Institut d'électronique fondamentale d'Orsay-Paris et de l'université des Sciences et techniques du Languedoc-Montpellier - HDR, habilitée à diriger les recherches

  • Naveena GENAY : Docteur de l'université des Sciences et techniques du Languedoc-Montpellier

  • Philippe CHANCLOU : Docteur de l'université de Rennes I

INTRODUCTION

Les composants émetteurs de lumière à semi-conducteur représentent la clé de voûte d'un nombre croissant d'édifices optoélectroniques. Ils se rencontrent dans les systèmes de télécommunications par fibre optique, dans les senseurs optiques, dans les systèmes de lecture de disques optiques, dans certains terminaux et équipements de mesure (imprimantes, alarmes, distancemètres, etc.).

Ce sont les composants qui ont le plus changé notre vie quotidienne depuis quelques décennies et ce n'est pas fini, car des idées futuristes émergent, par exemple dans le domaine de l'éclairage. Des diodes électroluminescentes à forte puissance pourraient remplacer les lampes utilisées actuellement. De nombreux avantages plaident en leur faveur : rendement énergétique élevé, durée de vie appréciable (10 ans), robustesse et possibilité de diffuser des informations de manière non perceptible à l'œil. Cette dernière propriété ouvre la voie à de nombreuses innovations.

Les performances de ces systèmes optoélectroniques sont étroitement liées à celles des composants émetteurs. L'évaluation, l'amélioration, ou la bonne utilisation de ceux-ci reposent sur la mesure précise des paramètres fondamentaux qui interviennent dans chaque utilisation.

Prenons l'exemple d'une liaison par fibre optique où l'information est portée simplement par l'intensité de la lumière : il faut pouvoir mesurer la vitesse optimale de modulation de la lumière émise et le manque de linéarité introduit par la conversion du courant électrique en lumière. Dans les systèmes plus élaborés, comme les systèmes de transmission cohérents, dans lesquels la phase, ou la fréquence, est le support de l'information, la connaissance du bruit de fréquence, ou de phase, est d'importance vitale.

Après un bref rappel sur le mode de fonctionnement des émetteurs à semi-conducteur, nous détaillerons les méthodes de mesure des principaux paramètres. La description des mesures purement électriques précédera celle des mesures purement optiques. Puis, viendront les mesures faisant intervenir la conversion des électrons en photons.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-r1178


Cet article fait partie de l’offre

Mesures et tests électroniques

(78 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

1. Jonctions émettrices à semi-conducteur

1.1 Principes de fonctionnement

Les dispositifs à semi-conducteur émettant de la lumière utilisent l'électroluminescence comme effet physique. Ce phénomène d'électroluminescence doit être attribué à la recombinaison radiative des porteurs de charge excédentaires injectés au voisinage, par exemple, d'une jonction P-N.

L'énergie libérée sous forme de rayonnement est égale à la différence entre celle de l'état ionisé appelé « paire électron-trou » et celle de l'état lié (électron et trou recombinés).

Deux conditions doivent être réalisées pour qu'il y ait émission de lumière. D'une part, il faut que la probabilité de transition radiative soit élevée, et que, d'autre part, il y ait une grande densité de porteurs susceptibles d'effectuer cette transition.

Le premier point est obtenu en utilisant un semi-conducteur à transition de bande directe, le second en polarisant une jonction P-N dans le sens direct. Appliquer une tension V, dans le sens direct aux bornes d'une jonction, revient à abaisser la barrière de potentiel que rencontrent les électrons et les trous et, ainsi, à faciliter leur pénétration d'une région à l'autre. La tension de polarisation directe V fixe la séparation des niveaux de Fermi dans la région P et dans la région N. Au voisinage de la jonction, il y a peuplement simultané de la bande de conduction en électrons et de la bande de valence en trous.

Le rendement quantique interne se définit comme le rapport entre le nombre de photons émis (proportionnel au taux de recombinaisons radiatives) et le nombre de porteurs injectés dans la diode (proportionnel au taux de recombinaisons radiatives et non radiatives).

Bien sûr, un rendement voisin de 1 est extrêmement précieux. Ce rendement est d'autant meilleur que les matériaux utilisés sont exempts de défauts de structure et d'impuretés indésirables, que la température est basse, que les niveaux de dopage des matériaux sont forts et que l'injection de porteurs est importante.

Par exemple, pour le GaAs, le rendement interne est de 0,9 pour une densité électronique de 1017 cm−3.

HAUT DE PAGE

1.2 Dispositifs

...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mesures et tests électroniques

(78 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Jonctions émettrices à semi-conducteur
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - JOINDOT (I.), JOINDOT (M.), douze coauteurs -   Les télécommunications par fibres optiques  -  . DUNOD Collection technique et scientifique des télécommunications, 1996.

  • (2) - AGRAWAL (G.P.), DUTTA (N.K.) -   Longwavelength semiconductors lasers (Lasers à semi-conducteur et à grande longueur d'onde)  -  . 473 p., Van Nostrand Reinhold Company lnc, New York, 1986.

  • (3) - PETERMANN (K.) -   Laser diode modulation and noise (Bruit et modulation des lasers)  -  . 315 p., Kluwer Academic Publishers, The Nederlands, 1988.

  • (4) - TSANG (W.T.) -   Semiconductors and semimetals  -  . 342 p., Academic Press lnc Orlando (Florida, USA), 1985.

  • (5) - JOINDOT (I.), BOISROBERT (C) -   Intensity noise measurements in semiconductor lasers (Bruit d'intensité dans les lasers à semi-conducteur)  -  . ISSSE 89 URSI (International symposium on signals, systems and electronics), Erlagen, p. 419-422, 1989.

  • ...

1 Fournisseurs et matériels

(liste non exhaustive)

  • Sphère intégratrice de Polytec

  • Mesureur de puissance :

    • Agilent 8163A ;

    • ILX Lightwave OMM-6810B.

  • Analyseurs de spectre optique (OSA) :

    • Anritsu MS9710C ;

    • Ando AQ 6319.

  • Analyseurs de polarisation :

    • InstrumentSystems ;

    • AdaptifPHOTONICS ;

    • ABSYS SA2000.

  • Mesureur de taux d'extinction de polarisation :

    • Optellios PS2000 ;

    • Fiberpro ER2000 ;

    • Thorlabs PAT9000.

  • Analyseur de signaux, analyseur de réseau :

    • Anritsu 37300 ;

    • Rohde & Schwarz FSQ26.

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mesures et tests électroniques

(78 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS