Présentation

Article

1 - CHOIX DU PROCÉDÉ ET DE LA FORMULATION

2 - PROCÉDÉS PHYSICO-CHIMIQUES

3 - PROCÉDÉS MÉCANIQUES

4 - PROCÉDÉS CHIMIQUES

5 - PROCÉDÉS BASÉS SUR LA TECHNOLOGIE DES FLUIDES SUPERCRITIQUES

6 - CONCLUSION

Article de référence | Réf : J2210 v2

Procédés mécaniques
Microencapsulation

Auteur(s) : Jean-Pierre BENOÎT, Joël RICHARD, Marie-Claire VENIER-JULIENNE

Relu et validé le 29 nov. 2018

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

La microencapsulation regroupe l'ensemble des technologies qui conduisent à des particules individualisées, constituées d'un matériau enrobant et d'une matière active, de taille comprise entre 1µm et 1000µm. Le choix du procédé est fonction de la structure souhaitée des particules (microcapsule ou microsphère), des propriétés de la molécule encapsulée, de la nature du matériau utilisé et de l'application visée. L'intérêt de la microencapsulation réside dans sa capacité à protéger la matière active, améliorer sa présentation ou maîtriser son profil de libération.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Microencapsulation

Microencapsulation encompasses all technologies leading to individualized particles consisting of a coating material and an active material of a size between 1µm and 1000µm. The choice of the process depends on the desired particle structure (microcapsule or microsphere), the properties of the encapsulated molecule, the type of material used and the desired application. The interest of microencapsulation lies in its capacity to protect the active material, improve its presentation or master its release profile.

Auteur(s)

  • Jean-Pierre BENOÎT : Professeur à la Faculté de pharmacie d'Angers

  • Joël RICHARD : Vice-président peptides, IPSEN - Ancien élève de l'École normale supérieure de Cachan - Docteur en sciences des matériaux - Habilité à diriger les recherches en chimie

  • Marie-Claire VENIER-JULIENNE : Professeur à la Faculté de pharmacie d'Angers

INTRODUCTION

La microencapsulation regroupe l'ensemble des technologies qui permettent la préparation de microparticules individualisées, constituées d'un matériau enrobant contenant une matière active.

Les microparticules présentent une taille comprise entre 1 μm et 1 mm et contiennent typiquement entre 5 et 90 % (en masse) de matière active. Les matières actives sont d'origines très variées : principes actifs pharmaceutiques, actifs cosmétiques, additifs alimentaires, produits phytosanitaires, essences parfumées, micro-organismes, cellules, ou encore catalyseurs de réaction chimique... Les matériaux enrobants sont des polymères d'origine naturelle ou synthétique, ou des lipides. Les microparticules obtenues présentent deux types de morphologies :

  • soit une microcapsule, c'est-à-dire une particule réservoir constituée d'un cœur de matière active liquide (plus ou moins visqueux) ou solide, entouré d'une membrane solide continue de matériau enrobant ;

  • soit une microsphère, c'est-à-dire une particule constituée d'un réseau macromoléculaire ou lipidique continu formant une matrice dans laquelle se trouve finement dispersée la matière active, à l'état de molécules, de fines particules solides ou encore de gouttelettes de solutions.

Sur le plan industriel, la microencapsulation est mise en œuvre pour remplir les objectifs suivants :

  • assurer la protection, la compatibilité et la stabilisation d'une matière active dans une formulation ;

  • réaliser une mise en forme adaptée ;

  • améliorer la présentation d'un produit ;

  • masquer un goût ou une odeur ;

  • modifier et maîtriser le profil de libération d'une matière active pour obtenir, par exemple, un effet prolongé ou déclenché.

Cet article ne traite pas de l'encapsulation moléculaire (cyclodextrines...), ni des phases molles (micelles, liposomes, sphérulites, microémulsions, émulsions...) ni des nanotechnologies.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

implementation   |   state of art   |   microparticles   |   principle

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-j2210


Cet article fait partie de l’offre

Formulation

(120 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

3. Procédés mécaniques

3.1 Procédé de nébulisation/séchage

Le procédé de nébulisation/séchage est un procédé continu en une seule étape qui permet de transformer une formulation liquide initiale en une forme microparticulaire sèche. La formulation liquide initiale peut être constituée :

  • soit d'une solution de matière active et de matériau enrobant ;

  • soit d'une dispersion de particules solides de matière active dans une solution ou une émulsion de matériau enrobant ;

  • soit encore d'une émulsion de matière active dans une solution de matériau enrobant.

Ce procédé comprend les quatre étapes séquentielles suivantes :

  • nébulisation de la formulation liquide initiale pour former un aérosol ;

  • mise en contact de l'aérosol avec un flux d'air, porté à une température contrôlée ;

  • séchage rapide de l'aérosol pour former des microparticules solides ;

  • séparation de la poudre de microparticules et de l'air contenant le solvant vaporisé.

L'appareillage est classiquement constitué d'une haute tour, au sommet de laquelle la formulation liquide initiale est nébulisée. La nébulisation s'effectue soit par passage à travers une buse d'atomisation pneumatique ou ultrasonore, soit par un système de type disque tournant ou buse rotative. Les microgouttelettes formées entrent en contact avec un flux d'air établi à cocourant, préalablement filtré et chauffé. Les microparticules se forment dans la chambre de dessiccation par vaporisation rapide et entraînement du solvant. Elles sont collectées à la base de cette chambre après séparation du flux d'air par passage dans un cyclone (figure 10).

Le procédé peut être mis en œuvre à partir de formulations en phase aqueuse ou en phase organique. Dans ce dernier cas, pour des raisons de sécurité et de conformité vis-à-vis des réglementations relatives aux émissions de composés organiques volatils (COV), le solvant vaporisé, qui est transporté par le flux d'air, est condensé et recueilli après le cyclone, avant évacuation de l'air.

Une autre configuration d'appareillage peut également être utilisée. Il s'agit...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Formulation

(120 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Procédés mécaniques
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - ARSHADY (R.) -   Microspheres, microcapsules and liposomes. Preparation and chemical applications.  -  Citus Books, Londres, 572 p. (1998).

  • (2) - ARSHADY (R.) -   Microspheres, microcapsules and liposomes. Medical and biotechnology applications.  -  Citus Books, Londres, 694 p. (1998).

  • (3) - BENITA (S.) -   Microencapsulation.  -  Methods and industrial applications, Marcel Dekker, Inc. , New York, 640 p. (1996).

  • (4) - VANDAMME (T.), PONCELET (D.), SUBRA-PATERNAULT (P.) -   Microencapsulation des sciences aux technologies.  -  Tec & doc, Paris, 355 p. (2007)

  • (5) - AFTABROUCHAD (C.), DOELKER (E.) -   Méthodes de préparation des microparticules biodégradables chargées en principes actifs hydrosolubles.  -  STP Pharma Sciences (F), Éditions de Santé, 2, no 5, bibl. (145 réf.), p. 365-380 (1992).

  • (6) - DAVIES...

1 Annuaire

HAUT DE PAGE

1.1 Fabricants d'équipements pour microencapsulation (liste non exhaustive)

Procédé de nébulisation/séchage

Büchi Labortechnik AG (Suisse) : équipements de laboratoire : Minispray Dryer B-290, Nano Spray Dryer B-90, Encapsulator B-390 / B395 Pro/ http://www.buchi.com

Shachi Engineering Pvt Ltd (Inde) : équipements du stade du laboratoire au pilote (capacité évaporatoire 1 kg), au pilote ( 3 à 10 kg) au stade industriel en séchage cocourant ou contre-courant http://www.shachidryers.com

GEA Niro Inc. (Danemark) :

– SDMICRO™ et Minor Mobile™om pour le laboratoire et le stade pilote, respectivement

– PRODUCTION MINOR® pour les productions de petits volumes

– VERSATILE-SD® pour une large gamme d'échelles de production

– « équipements spécialisés » PHARMASD® pour la production pharmaceutique BPF http://www.niroinc.com

Procédé de gélification et de congélation de gouttes

Brace GmbH (Allemagne) : équipements du stade du laboratoire jusqu'au pilote (quelques L/h) jusqu'au stade industriel (10 000 L/h) http://www.brace.de

Nisco Engineering AG (Suisse) : équipements pour la production de lots de l'échelle du gramme au kilogramme, avec possibilité d'opérer en conditions...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Formulation

(120 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS