Présentation

Article

1 - FONDEMENTS

2 - CELLULE ÉLÉMENTAIRE

3 - RÉACTEUR MULTICELLULES

4 - PROCÉDÉ ET ÉQUIPEMENTS AUXILIAIRES

5 - ANALYSE DE PERFORMANCE

6 - PRODUITS ET DOMAINES D’APPLICATION

7 - LIMITATIONS ET PERSPECTIVES

8 - CONCLUSIONS

9 - GLOSSAIRE

10 - SIGLES, NOTATIONS ET SYMBOLES

Article de référence | Réf : J4810 v2

Limitations et perspectives
Électrolyse de l'eau à membrane polymère acide

Auteur(s) : Pierre MILLET

Date de publication : 10 oct. 2025 | Read in English

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

L’électrolyse de l’eau à membrane polymère acide - PEM - est une technologie prometteuse permettant la production d’hydrogène et d’oxygène de grande pureté, répondant aux enjeux énergétiques et environnementaux actuels. Cet article expose les fondements théoriques sous-jacents, décrit le fonctionnement des cellules élémentaires et le rôle des composants clés tels que les électrocatalyseurs et les membranes polymères, et dresse la liste des équipements auxiliaires nécessaires au bon fonctionnement des machines. Les principales applications industrielles sont présentées. Les niveaux de performance atteignables et les limitations et perspectives d’amélioration sont également analysés et discutés.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Pierre MILLET : Docteur-ingénieur de l’Institut national polytechnique de Grenoble - Professeur à l’université Paris-Saclay - Directeur scientifique chez Elogen - Institut de Chimie Moléculaire et des Matériaux d’Orsay-UMR 8182 – Université Paris-Saclay, Orsay, France

INTRODUCTION

L’électrolyse de l’eau permet d’obtenir de l’hydrogène et de l’oxygène de grande pureté, traditionnellement utilisés dans différents secteurs industriels tels que l’industrie alimentaire, l’industrie des semiconducteurs, ou les applications spatiales et sous-marines. Au cours des dernières décennies, l’évolution du contexte énergétique et la nécessité de réduire les émissions de gaz à effet de serre a provoqué un regain d’intérêt pour la production d’hydrogène électrolytique (vecteur énergétique) à partir de sources d’énergies renouvelables. En dépit d’un coût d’investissement encore élevé, du fait de l’utilisation d’électrocatalyseurs à base de métaux précieux et d’ionomères fluorés, la technologie à membrane polymère acide (plus connue sous l’acronyme anglo-saxon PEM qui signifie « Proton-Exchange Membrane » ou « Polymer Electrolyte Membrane ») présente une complémentarité voire des avantages importants par rapport à la technologie alcaline de référence. En particulier, l’absence d’électrolyte liquide corrosif permet de concevoir des électrolyseurs fiables, fonctionnant en régime transitoire sous haute pression voire sous différentiel de pression, sous forte densité de courant et avec des rendements énergétiques élevés. L’objectif de cet article est de fournir une analyse détaillée du fonctionnement et des performances des électrolyseurs PEM, tout en explorant les défis technologiques et économiques associés à cette technologie. Ce travail s’inscrit dans un contexte technico-économique où l’électrolyse de l’eau est vue comme un levier essentiel pour la production d'hydrogène vert, en lien avec les politiques énergétiques actuelles visant à réduire les émissions de gaz à effet de serre. À travers une exploration des fondements théoriques, des composants clés, des fonctionnalités auxiliaires et des performances, cet article vise à fournir aux acteurs industriels et scientifiques une compréhension claire des opportunités et des obstacles associés à cette technologie de production d'hydrogène propre.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-j4810


Cet article fait partie de l’offre

Opérations unitaires. Génie de la réaction chimique

(369 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Des modules pratiques

Opérationnels et didactiques, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

7. Limitations et perspectives

7.1 Teneurs en métaux précieux

Une analyse superficielle de la situation pourrait laisser penser que les réserves disponibles et le prix de l’iridium (environ 130 k€.kg−1 en 2025) empêcheront la technologie PEM de se développer à l’échelle du GW. En fait, l’électrochimie est essentiellement une science des interfaces. Des progrès très significatifs ont été réalisés au cours des dernières années pour réduire de manière significative les quantités de métaux précieux utilisées. La figure 23 montre par exemple qu’en passant d’un chargement de l’ordre de 2 mg.cm−2 (une valeur usuelle lors des premières applications apparues dans les années 1980) à 60 µg.cm−2 (des valeurs qu’il est possible d’atteindre grâce à des techniques de dépôt particulières), la quantité d’iridium nécessaire pour un GW d’électrolyseur descend en-dessous de la dizaine de kg. Le défi pour l’ingénieur est de parvenir à faire fonctionner les stacks avec aussi peu de catalyseur sur des durées au moins égales à 70 000 heures, voire jusqu’à 100 000 heures. Le paradoxe, c’est que plus les teneurs sont faibles, plus elles deviennent difficiles à récupérer et à recycler en fin de vie.

HAUT DE PAGE

7.2 Compacité et empreinte au sol

Il existe une relation directe entre le coût d’investissement (CAPEX) et la densité de courant à laquelle un électrolyseur peut fonctionner. À isoefficacité énergétique (c’est-à-dire à isotension de cellule), la densité de courant qu’il est possible d’atteindre dépend directement de l’épaisseur de la membrane utilisée comme électrolyte polymère (figure 24). À l’échelle du laboratoire, il a été montré que des densités de courant aussi élevées que 20 A.cm−2 pouvaient être atteintes. Dans l’industrie, le standard se situe plutôt aux alentours de 1,5-3,0 A.cm−2 (ce qui démontre au passage le large potentiel inexploité de cette technologie)....

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Opérations unitaires. Génie de la réaction chimique

(369 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Des modules pratiques

Opérationnels et didactiques, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Limitations et perspectives
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - TRASATTI (S.) -   1799-1999 : Alessandro Volta’s ‘Electric Pile’.  -  In : Journal of Electroanalytical Chemistry, vol. 460, p. 1-4 – 10.1016/S0022-0728(98)00302-7 (1999).

  • (2) - DE LEVIE (R.) -   The electrolysis of water.  -  In : Journal of Electroanalytical Chemistry, vol. 476, p. 92-93 – 10.1016/S0022-0728(99)00365-4 (1999).

  • (3) - LEROY (R.L.), BOWEN (C.T.), LEROY (D.J.) -   The Thermodynamics of Aqueous Water Electrolysis.  -  In : Journal of The Electrochemical Society, vol. 127, p. 1954-1962 – 10.1149/1.2130044 (1980).

  • (4) -   The European Hydrogen Backbone (EHB) initiative.  -  https://ehb.eu/ [s.d.].

  • (5) - HANKE-RAUSCHENBACH (R.), BENSMANN (B.), MILLET (P.) -   Hydrogen production using high-pressure electrolyzers.  -  In : Compendium of Hydrogen Energy, Elsevier, p. 179-224 – https://doi.org/10.1016/B978-1-78242-361-4.00007-8 (2015)

  • ...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Opérations unitaires. Génie de la réaction chimique

(369 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Des modules pratiques

Opérationnels et didactiques, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS