Dans les applications, les équations différentielles qui s’introduisent le plus naturellement sont les équations différentielles autonomes, qui sont étudiées dans le cadre des systèmes dynamiques () et les équations différentielles linéaires (), éventuellement non autonomes, qui modélisent des systèmes entretenus simples. Les équations différentielles les plus générales, celles qui font l’objet du présent article, offrent néanmoins le cadre le moins artificiel pour étudier les phénomènes complexes régis par une loi continue. Leur étude permet en outre, sous des hypothèses plus fortes, d’obtenir les résultats théoriques nécessaires à l’analyse des équations autonomes. En outre, les techniques qualitatives qui leur sont dédiées s’appliquent, mutatis mutandis, aux équations différentielles autonomes et linéaires. L’usage de l’ordinateur peut être d’un grand secours, tant dans la résolution exacte et approchée de ces équations que dans leur étude qualitative. Le calcul exact (formel) des solutions de certaines classes d’équations différentielles fera l’objet d’un article séparé.