L’étude du domaine térahertz (THz) a été relancée et facilitée à la fin des années 1980 grâce à l’émergence de nouvelles techniques et technologies, tout d’abord optoélectroniques, puis basées sur la montée en fréquence des composants électroniques ou le développement de nouveaux composants nanométriques. Cet effort de recherche est stimulé, au-delà de la recherche académique, par les nombreuses applications entrevues. Ces applications s’appuient sur la transparence de matériaux opaques dans le visible ou l’infrarouge (applications à l’imagerie pour le contrôle industriel, la médecine ou pour la sécurité – inspection des personnes –), l’existence de signatures spectrales uniques de certaines molécules (applications à l’identification de molécules par spectroscopie par exemple dans les domaines de l’environnement, de la sécurité, de la biophysique, de l’astrophysique…), la possibilité de moduler ces ondes à très hautes fréquences (télécoms très haut débit à très courtes distances). Cet article présente tout d’abord les applications de la technologie térahertz dans le domaine de l’instrumentation scientifique, qui constitue actuellement sans aucun doute le plus gros marché pour les dispositifs et systèmes térahertz. Ensuite, il décrit le domaine de la sécurité et du militaire, auquel est dédiée aujourd’hui une très grande partie des recherches en térahertz. La troisième partie de l’article est consacrée aux applications industrielles. Si peu de systèmes térahertz sont effectivement installés aujourd’hui dans des entreprises, on peut imaginer qu’à terme, nombre de niches seront occupées par la technologie térahertz qui viendra en complément de techniques déjà bien répandues, comme la spectroscopie infrarouge et visible, ou bien la diffraction des rayons X, etc. Le paragraphe suivant décrit l’application de l’imagerie térahertz à l’examen d’œuvres du patrimoine artistique, qui met en jeu des procédures très proches de celles des applications industrielles. Le développement d’instrumentations et techniques térahertz pour la médecine et la biologie est ensuite présenté. Souvent décrite comme technique d’investigation d’avenir pour la médecine, l’imagerie térahertz a néanmoins du mal à s’imposer définitivement. Pour la biologie, les applications semblent plus faciles à mettre en place. En environnement, grâce à leur spécificité spectrale, les ondes térahertz apportent des informations complémentaires des techniques traditionnelles, comme le lidar, ou même des informations uniques, certaines molécules ne présentant une signature spectrale originale que dans le domaine térahertz. Enfin, la montée en fréquence des télécommunications les rapproche régulièrement de la région térahertz. D’une part, les flux de données, au niveau de tests en laboratoire, dépassent les 100 Gbits/s, d’autre part on met aussi au point des systèmes de transmission en espace libre, principalement pour l’intérieur des immeubles, employant une onde térahertz comme porteuse du signal. L’article se termine par une conclusion où les auteurs font part de leur réflexion sur l’avenir de la science et de la technologie térahertz. Cette conclusion est suivie d’une liste la plus complète possible des entreprises proposant des composants, des dispositifs et des systèmes térahertz, ainsi que la liste des principaux livres publiés sur cette thématique.