Un robot est un système mécatronique dans lequel l’association d’un mécanisme, de capteurs et d’actionneurs aboutit à un dispositif réalisant des tâches de manière autonome ou en collaboration avec l’homme. L’actionnement en robotique est bien entendu une problématique centrale : un actionneur est l’élément fournissant une énergie mécanique à la base de l’existence des mouvements d’un robot. Si la robotique a initialement été centrée sur des contextes industriels spécifiques, avec la réalisation de tâches répétitives, elle devient désormais omniprésente et ses contextes applicatifs sont donc aujourd’hui nombreux : domotique, santé, transports… Des contraintes d’intégration diverses et parfois très fortes pour l’actionnement émergent de ces nouveaux domaines applicatifs. Ainsi, en robotique médicale, les contraintes de compacité sont extrêmement fortes lorsqu’il s’agit de développer des outils chirurgicaux robotisés de taille millimétrique. Les impératifs de sécurité sont par ailleurs majeurs, et l’on souhaite pouvoir limiter matériellement les courses des outils pour assurer l’existence de mouvements gardés. Dans le contexte de la robotique mobile, le rapport poids/puissance des actionneurs est une caractéristique critique pour des raisons d’autonomie. En robotique bio-inspirée, on est par ailleurs conduit à considérer des solutions qui n’exploitent pas de simples mouvements de rotation ou translation pure, mais des mouvements correspondant à des déformations distribuées d’éléments de structure, qu’il s’agit de pouvoir actionner. De plus, le caractère compliant, i.e. non rigide, des actionneurs peut être un atout pour la réalisation de tâches robotiques. C’est le cas en robotique mobile, mais aussi par exemple en robotique collaborative, où l’interaction homme-robot peut être améliorée par la présence de compliances. L’association d’un actionneur électromagnétique et d’un élément compliant (donc souple), en série avec ce dernier peut être envisagée , mais avec un niveau d’intégration qui reste limité. Finalement, dans tous ces contextes, des stratégies d’actionnement conventionnelles trouvent leurs limites. Des solutions alternatives sont indispensables. Trois d’entre elles sont présentées dans cet article : actionneurs piézoélectriques, fluidiques flexibles et par alliage à mémoire de forme. Elles sont les plus largement exploitées si on les compare à d’autres technologies comme l’actionnement thermique, par changement de phase ou magnétostrictif dont l’usage est plus rare et plus spécifique aux faibles échelles (≤ 1 mm). Pour chaque technologie, le principe de base est d’abord introduit, avant de dresser un état de l’art des actionneurs développés. Des éléments d’aide à la modélisation et à la mise en œuvre sont ensuite présentés, avant de détailler les champs d’application à partir d’exemples significatifs issus d’applications industrielles ou en laboratoire. Une synthèse est alors réalisée avant de conclure sur l’utilisation de ces technologies d’actionnement.