Un système de systèmes (SdS) est un assemblage de différents systèmes, indépendants les uns des autres, tant au niveau managérial qu’au niveau opérationnel. Cela signifie qu’ils sont potentiellement acquis et mis en œuvre indépendamment les uns des autres. Leur assemblage au sein d’un SdS permet d’obtenir des capacités à agir, à mener des missions et à produire des effets qu’aucun d’eux ne peut faire seul. Ce sont ces capacités, ces missions et ces effets que recherchent les parties prenantes s’engageant dans la conception et la mise en œuvre d’un SdS. Un tel assemblage permet aussi d’optimiser la valeur globale des systèmes, en particulier en évitant de développer un coûteux système ad hoc, fournissant les capacités et effets désirés, mais pour des missions rares, engendrant un coût d’usage très important.
Les dimensions opérationnelles, contractuelles, budgétaires, juridiques, interagissent étroitement avec les dimensions techniques. Par rapport à l’ingénierie système « traditionnelle », cela oblige à davantage prendre en compte toutes les dimensions, qu’elles soient ou non techniques, et force à une plus grande intégration de la gestion de programmes et l’ingénierie système.
Des exemples de systèmes de systèmes, qui mettent clairement en évidence ces points, sont entre autres : la circulation aérienne dans le cas de vols long courrier, le transport multimodal à l’échelle d’une communauté de communes, les grilles électriques (génération, transport, distribution de l’énergie électrique) à l’échelle de plusieurs pays, le système bancaire, la réponse à des menaces terroristes…
L’article présente, dans un premier temps, les enjeux et concepts clés des systèmes de systèmes. En particulier, les notions d’indépendance, de configuration évolutive, de connectivité, de diversité, et du maximum de la chaîne de valeur y sont définies. Ensuite, l’article énonce les différentes dimensions, techniques ou non techniques, des SdS qu’il est nécessaire de maîtriser souvent rassemblées sous les deux acronymes anglo-saxons DOTMLPFI (doctrine, organization, training, materiel, leadership, personnel, facilities, information) et PESTEL (political, economic, social, technological, environmental, legal), les différentes activités à mener en fonction de ces dimensions, ainsi que les impacts juridiques et contractuels sur les activités de gestion de programmes et d’ingénierie système. Enfin, les activités spécifiques de gestion de programmes et d’ingénierie système à mener au niveau SdS sont présentées, ainsi que les activités récurrentes adaptées au niveau SdS. En particulier sont détaillées la modélisation des scénarios opérationnels et la définition des chaînes fonctionnelles, qui permettent de désigner les systèmes contribuant à la capacité recherchée et de concevoir leurs interfaces.
L’exemple illustrant les notions présentées dans l’article concerne un SdS de gestion de situation d’urgence . La situation est la suivante : plusieurs pays, disposant déjà de leurs propres systèmes de gestion de situation d’urgence, décident de s’associer. En effet, face à l’accroissement de la fréquence et de la gravité des situations d’urgence (accidents, événements climatiques, attaques terroristes…), ces pays veulent pouvoir s’entraider, intervenir de façon coordonnée au profit de l’un d’entre eux, en mutualisant leurs moyens. Il s’agit donc d’assembler des systèmes acquis et utilisés indépendamment les uns des autres afin d’en maximiser la chaîne de valeur, en particulier au moment de crises majeures que connaissent ces pays, avec des combinaisons d’assemblage adaptées aux différents types de crises et des ressources disponibles dans les différents pays au moment où survient la crise.